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ABSTRACT 
 
 

This dissertation proposes novel solutions for important drawbacks of antenna arrays. One 

of the main contributions of the presented work is size reduction and nulling performance 

improvement of traditionally large anti-jam global positioning system (GPS) arrays using 

miniature antennas and electrically small resonators emulating an engineered metamaterial. 

Specifically, a miniaturized coupled double loop (CDL) dual band antenna is first introduced as a 

small antenna element of the compact GPS array. The loops that are capacitively coupled using 

lumped element capacitor, and employ metallic pins around their perimeter to improve the 

radiation efficiency by achieving a volumetric current distribution. This design is employed for 

the implementation of a compact 2×2 GPS array by reducing the inter-element spacing between 

the adjacent elements. However, having the antenna elements in close proximity of each other 

yields to a high mutual coupling and potentially degrades the nulling performance. The mutual 

coupling is performed by observing the magnetic field distribution within the array. It is noticed 

that the mutual coupling can be reduced by using metamaterial resonators. The right hand circular 

polarization (RHCP) radiation nature of the array complicates the mutual coupling suppression as 

compared to linear arrays. It is determined that split ring resonator (SRRs) are effective to mitigate 

the mutual coupling problem if placed strategically around the antenna elements. The study is 

verified experimentally where the mutual coupling is reduced by more than 10 dB. Lowering the 

mutual coupling improved the array’s nulling capability by increasing the nulls’ depth by 8 dB as 

well as enhancing the accuracy of the nulls’ locations. 
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 The second major contribution of the presented work is to introduce a novel microfluidic 

based beam-scanning technique for the implementation of low cost mm-wave antenna arrays. 

Traditionally, beam scanning capability is obtained using mechanical steering of the entire antenna 

structure or electronic components such as switches or phase shifters. The former is bulky, whereas 

the latter technique requires integrating substantial and expensive hardware in the array’s feed 

network. For instance, a beam-scanning 1×8 focal plane array (FPA) would employ 7 single pole 

double through (SPDT) switches in its feed network. If an 8×8 FPA is desired, then 8×7+8 switches 

are required that results in an efficient design in terms of power loss and cost. In this dissertation, 

the microfluidic principles are introduced for designing and implementing affordable beam 

scanning antenna array with high gain radiation. Specifically, a microfluidic-based focal plane 

array 1×8 (MFPA) is designed and implemented at 30 GHz. The proposed MFPA consists of 

microfluidic channels connecting reservoirs. Both of the channels and reservoirs are filled with a 

low loss dielectric solution, and the antenna is formed by using a small volume of liquid metal. 

The beam scanning capability is obtained by placing the array at the focal point of a microwave 

lens and moving the antenna among the reservoirs using a micropump. Therefore, the feed network 

is extremely simplified by avoiding using SPDT switches. In addition, a strategic design 

methodology for a completely passive resonant corporate feed network is discussed. The array is 

characterized numerically and verified experimentally. The simulated and measured performances 

are in a very good agreement with ±300 FoV and > 21 dB realized gain. However, the array’s 

radiation pattern exhibits high side lobe level (SLL) due to the resonant nature of the introduced 

corporate feed network. Consequently, new resonant and non-resonant straight feed networks are 

introduced to alleviate the high SLL issue. Moreover, they are modeled with appropriate equivalent 

circuits in order to analyze the array’s performance analytically in terms of -10 dB |S11| bandwidth 
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and power loss. The analytical solution is based on the transmission line theory and two ports 

network analysis. It is verified with the full wave simulations and a very good agreement is 

observed. Using the straight feed network reduces the SLL to more than 20 dB relative the pattern’s 

peak. This enhancement in the performance is verified experimentally as well by designing, 

fabricating and testing a 30 GHz MFPA fed using a resonant straight network. A ±250 FoV is 

obtained with a SLL < -20 dB and 4% -10 dB |S11| bandwidth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



www.manaraa.com

 

1 
 

 
 

 
 

 
CHAPTER 1: INTRODUCTION 

 
 
The continuous growth of wireless communication systems is associated with many 

problems such as limited channel bandwidth, interference and restricted coverage range [1]. The 

utilization of antenna arrays was suggested to overcome some of the challenges as they can provide 

many favorable characteristics like directive patterns, beam scanning and nullifying the jamming 

signals [2]. However, the conventional antenna arrays suffer in terms of physical size, mutual 

coupling, high cost, and design complexity. For instance, available commercial GPS antenna 

arrays exhibit large dimensions. Figure 1.1(a) shows the 14.1" diameter array that was introduced 

by the PMW/A -170’s Air Navigation Warfare (NAVWAR) program [3]. The array consists of 7 

elements and exhibits the anti-jamming capability. Another example of an available commercial 

GPS array (DM N79-1-1) is depicted in Figure 1.1(b) [4]. As shown in the figure, the array is 

comprised of 6 antenna elements that operate at the L1 (1.575 GHz) and L2 (1.227 GHz) frequency 

 

Figure 1.1: Examples of commercial GPS arrays.  

(a) (b) 

14.1" 
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bands. Similar to the aforementioned array, the array is a Controlled Radiation Pattern Antenna 

(CRPA) that includes a processing unit for cancelling the interference signals and places nulls 

towards them in the array’s radiation pattern. The array exhibits a diameter of 14" and the radial  

separation between the elements is 4.71". Therefore, it is expected to have low mutual coupling   

(>10 dB) among the antennas. This anticipation is actually supported by the array’s nulling 

performance that is claimed to have > 20 dB null depth.  

Although the previously mentioned arrays provide anti-jamming functionalities, they 

exhibit large dimensions. Therefore, these designs are not suitable with the current stringent 

requirements that demand compact arrays [5, 6]. Having antenna elements in close proximity to 

reduce the size results in higher mutual coupling that becomes a serious problem degrading the 

array nulling and beam steering functionality [7]. As a result, new design techniques should be 

investigated to achieve miniature antenna arrays exhibiting low mutual coupling among their 

elements. 

Recently, electromagnetic band gap (EBG) structures [8] and metamaterial insulators based 

on split ring resonators (SRRs) [9, 10] have been introduced as alternative and effective methods 

for suppressing the mutual coupling among the antenna elements of compact arrays. Due to their 

small electrical size, SRRs have been particularly found attractive when the antenna elements of 

the array were placed in close proximity (<< λ0/2). Specifically, stacked SRRs were shown to 

prevent wave propagation and suppress mutual coupling by emulating an effective medium that 

can be characterized via a homogenized negative permeability property. Although SRR based 

coupling reduction has been already investigated, these studies are limited to linearly polarized 

patch [9] and high profile monopole [10] antennas. Our technique extends the approach to a 2×2 

circularly polarized compact GPS array that is constructed from electrically small coupled double 
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loop (CDL) antennas [11]. Specifically, chapter 2 introduces the design and nulling capability of 

a compact 2×2 dual-band coupled double loop (CDL) GPS antenna array loaded with broadside 

coupled split ring resonators (BC-SRR). The high level of L2 band mutual coupling is reduced by 

utilizing μ-negative (MNG) BC-SRR metamaterial within the array volume. This metamaterial 

loading is possible due to the small L2 band electrical size (λ0/8.5×λ0/8.5) of the CDL antenna 

elements. Different than the existing work on coupling reduction of linearly polarized antenna 

arrays, mutual coupling mechanism within the circularly polarized GPS array is considered and 

MNG metamaterials are shown to reduce the mutual coupling if they are placed between the 

antennas in a particular alignment. A 2×2 array with λ0/3.7 inter-element spacing is designed to be 

loaded with BC-SRRs and experimentally verified to exhibit a 10 dB L2 band mutual coupling 

reduction. Through simulations and experiments, it is also demonstrated that the reduction in L2 

band mutual coupling improves the L2 band array nulling capability in terms of accuracy and null 

depth without affecting the already well-behaved L1 band performance. The presented array has 

an overall footprint size of 4.3″×4.3″ and can be potentially miniaturized further for different inter-

element spacing. 

In addition to the need for compact arrays, cost reduction is highly desired for antenna 

arrays that exhibit high gain and beam scanning capabilities. At the mm-wave band (30 GHz-300 

GHz), these functionalities are desired for many applications such as improving the capacity of 60 

GHz wireless channels by increasing the signal to noise (S/N) ratio [12]. Moreover, the 77 GHz 

automotive radar systems will be soon integrated with most of the commercial automobile brands 

for collision warning and adaptive cruise control applications [13].  In addition, the 94 GHz radar 

arrays are being utilized for mm-wave imaging, security and military applications [14]. In order to 

obtain the high gain and beam scanning capabilities, the state of art of phased arrays [15], focal 
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plane arrays (FPAs) [16], and reflectarrays [17] are used. Phased arrays can be implemented using 

architectures such as “All RF” [18-21], IF phase shifting approach [22], and mixer-based designs 

[23, 24]. The “All RF” designs demand employing extensive hardware components such as phase 

shifters, power amplifiers and power dividers in their feed networks. Therefore, they are 

complicated and expensive. On the other hand, the IF phase shifting and mixer-based designs 

require a phase shifter and mixer per antenna element. Such designs result in challenges in routing 

the local oscillator’s signal to the mixing elements especially for large apertures (i.e., large number 

of elements). 

Similar to “All RF” phased arrays, FPAs utilizes RF components for the beam scanning 

functionality. Specifically, an M×N FPA requires M×(N-1)  (M-1) SP2T switches integrated with 

its feed network. At the mm-wave band, these switches suffer from high insertion loss (~ 1 dB at 

30 GHz) and high cost that result in very expensive and inefficient arrays in terms of power 

consumption. To reduce the feed network complexity, in this dissertation, a novel beam scanning 

FPA that relies on microfluidic principles is investigated. As will be discussed in chapters 3, the 

antenna elements of the microfluidic-based FPA (MFPA) are formed from microfluidic reservoirs 

and channels. The reservoirs exhibit the shape of a patch antenna and only one of them is activated 

when filled with liquid metal. A low loss dielectric solution is utilized to move the liquid metal 

among the adjacent reservoirs using micropumps. Although liquid metal based RF 

reconfigurability has been recently proposed for realizing frequency tunable RF components such 

as antennas [25] and frequency selective surfaces [26], this work extends the use of liquid metals 

into a fundamentally different beam scanning array technology. Specifically, we demonstrate the 

operational principles and experimentally verify the technique by considering a 1×8 30 GHz FPA 

that would traditionally require 7 SP2T RF switches. The MFPA is designed to operate behind an 
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8 cm diameter extended hemispherical Rexolite lens with an extension length of 4.32 cm [27]. It 

will be shown that the feed network of the MFPA can be successfully operated without resorting 

to any RF switches when the microfluidic enabled beam scanning is utilized. The proximity 

coupled feed network of the array is passive and designed strategically to accommodate the 

position variation of the liquid metal antenna element. Specifically, the network is a resonant based 

corporate one that consists of 8 λg/2 open stub resonators separated by λg microstrip transmission 

lines. Using the proposed design, the array operates with measured 70 half power beamwidth 

(HPBW), > 21 dB realized gain, 3.3% |S11 | <  -10 dB bandwidth and provides ±300 beam scanning 

range. The presented microfluidic based beam scanning technique operates without resorting to 

RF switches. Consequently, it is promising for high power handling and low cost realization of 

mm-wave high gain beam scanning antenna arrays. 

Chapter 4, for the first time, considers the design details and performance evaluation of 

three different passive network layouts that can potentially be utilized to excite MFPAs. 

Specifically, resonant corporate, resonant straight, and non-resonant straight microstrip line feed 

networks are introduced and their loss/bandwidth performances are investigated using 

transmission line theory. In addition, a ray tracing and diffraction radiation integrals hybrid 

analysis [28] is utilized to demonstrate the impact of the proposed feed networks on the radiation 

properties of the MFPA in terms of realized gain and side lobe levels (SLLs). It is shown that the 

resonant and non-resonant straight microstrip line feed networks reduce the SLL by more than 10 

dB relative to the resonant corporate feed network utilized in chapter 3. The performance 

improvements are experimentally verified through an 8 element extended hemispherical dielectric 

lens based MFPA prototype. Different than the work that relied on liquid metal, the antenna 

element of this MFPA is implemented from a metalized plate by carrying out flow 
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characterizations on various microfluidic channel geometries. This metalized plate approach paves 

the way for reliable liquid metal free microfluidic reconfigurable devices with possibly higher 

efficiency and power handling capabilities. 

Finally, chapter 5 summarizes the work discussed in this dissertation and discusses the 

possible future work of the GPS array as well as the MFPAs. 
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CHAPTER 2: COMPACT 2×2 COUPLED DOUBLE LOOP GPS ANTENNA ARRAY  

 
LOADED WITH BROADSIDE COUPLED SPLIT RING RESONATORS 

 
 
2.1. Introduction 

 
Global Positioning System (GPS) receivers are susceptible to jamming due to the relatively 

weak signal levels [2]. To alleviate this issue, two dimensional (2D) anti-jam GPS antenna arrays 

are generally employed to adaptively place radiation pattern nulls towards the directions of 

undesired interfering signals. In addition to being able to generate deep nulls, the anti-jam GPS 

arrays are also required to exhibit a compact size for applications involving small unmanned 

vehicles [6]. Recently, several miniaturized GPS array designs have been introduced by employing 

tightly packed electrically small antennas [5, 6]. A consequence of placing antenna elements in 

close proximity is higher mutual coupling that results in a degraded nulling capability of an array 

[7, 29]. However, to the best of our knowledge, previous studies have not considered any methods 

for reducing the mutual coupling within compact circularly polarized (CP) GPS arrays, and 

discussed their effects on the array nulling. 

Reducing mutual coupling within linearly polarized antenna arrays have been actively 

pursued in literature by making use of various techniques. For example, integrating matching 

networks within printed monopole antennas has been shown to be an effective technique [30, 31]. 

Slotted ground planes acting as electromagnetic band-gap (EBG) structures have been used to 

decouple different types of linearly polarized antennas such as patches, monopoles and planar 

inverted F antennas [32, 33]. Similarly, mushroom like EBG structures have been used to suppress 
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mutual coupling between patch antennas [8, 34] . For tightly packed monopole and patch antenna 

arrays, periodic arrangements of spiral resonators (SRs) and broadside coupled split ring resonators 

(BC-SRRs) have been demonstrated to be effective in reducing mutual coupling as they effectively 

act as an artificial media with negative permeability (i.e. μ-negative (MNG) metamaterial) within 

the vicinity of their resonance frequency [10, 35]. These types of resonators have also been 

proposed to be utilized in compact RF systems such as small radio repeaters [9]. 

A key aspect of reducing mutual coupling via employing spiral or split-ring resonators 

relies on aligning the resonators’ axes with the magnetic field component of the electromagnetic 

field responsible for mutual coupling. Since the electromagnetic field distribution around the 

antenna elements of a tightly packed array is strongly dependent on the antenna type and its 

excitation, a judicious choice must be made for aligning the resonators. These concepts have been 

already shown to work effectively in reducing mutual coupling within various types of linearly 

polarized antenna arrays [10, 35]. However, the coupling mechanism observed within compact 

GPS arrays is more complicated. This is due to the fact that in CP antennas two orthogonal resonant 

modes are simultaneously excited and these modes exhibit different coupling field distributions 

[36]. In addition, for compact GPS arrays, the number of resonators and their physical area must 

be minimal to maintain the small array size. Another concern is associated with the impedance 

mismatch issues that may occur by placing the resonators in close proximity of the antenna 

elements.  

This chapter investigates the design and performance of a compact 2×2 GPS array loaded 

by BC-SRR based μ-negative metamaterial (see Figure 2.1). Different than previous work [8-10, 

30-35], a small circularly polarized array is designed with reduced mutual coupling and shown to 

exhibit improved nulling capability. The design principles are characterized computationally and 
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validated experimentally. Additionally, the elements of the array are dual-band coupled double 

loop (CDL) antennas and distinguish it from previously published compact GPS arrays [5, 6, 37].  

The work is organized as follows: The impedance matching and gain performances of the stand-

alone dual-band CDL GPS antenna element are briefly described in section 2.2. Section 2.3 

analyzes the mutual coupling level within the array through the simulated S-parameters and 

determines that L2 band coupling level is significantly higher (7 dB) than the L1 band. Hence, the 

L2 band magnetic field distribution within the array is subsequently investigated to identify the 

possible locations for introducing the BC-SRRs to suppress the mutual coupling. Section 2.4 

carries out the BC-SRR loaded CDL GPS array design. The number and exact locations of the BC-

SRRs are determined through simulations in order to maintain the good impedance matching 

performance of the antenna elements and the compactness of the array. Section 2.5 investigates 

the nulling capability of the BC-SRR loaded array through simulations and experiments. 

Specifically, the mutual coupling within the designed BC-SRR loaded GPS array is shown to be 

reduced by more than 10 dB in the L2 band. The presented results also demonstrate that the BC-

SRR loaded array potentially exhibits a better nulling capability in terms of accuracy and depth as 

compared to the unloaded array. Specifically, the nulls are measured to be 8 dB deeper when the 

array is loaded with BC-SRRs. 

2.2. CDL GPS Antenna Element 

Figure 2.1(a) depicts the computational model of the 2×2 BC-SRR loaded GPS array 

consisting of dual-band (L2: 1.227 GHz, L1: 1.575 GHz) CDL antenna elements. The CDL antenna 

uses a readily available Rogers® TMM10i printed circuit board as its substrate (εr=10.2, 

tan(δ)=0.002) and exhibits an overall size of 1.1"×1.1"×0.5" (i.e. λ0/8.5×λ0/8.5 at L2). This 

electrically small element size enables construction of a compact GPS array. For the presented 
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study, the separation between element edges is 1.5". This implies a λ0/3.7 center to center 

separation at L2 band. The overall array footprint is 4.3"×4.3" and comparable to the recently 

available 2×2 GPS arrays (e.g. [38]).  

 

Figure 2.1: HFSS Computational models of the 2D GPS array.  a) BC-SRR loaded 2×2 CDL GPS antenna 
array and CDL GPS antenna: b) top view and c) 3D view. 
 

As shown in Figure 2.1(b), the CDL antenna footprint consists of two printed loops that 

are capacitively coupled through the lumped coupling capacitors. The 1.2 pF capacitors are 

primarily utilized for adjusting the frequency spacing between the lower and higher-end resonance 

frequencies of the CDL GPS antenna [11]. To maintain a compact antenna size without degrading 

its radiation efficiency, the outer loop is loaded with 400 mil long conductive pins with 39.6 mil 

diameters as shown in Figure 2.1(c). The antenna is fed by two coaxial probes that are 900 out of 

phase with respect to each other to generate the right hand circularly polarized (RHCP) radiation. 

Throughout the paper, an infinite ground plane was used in simulation models, whereas a 24"×24" 

square ground plane was employed to take the measurements. Figure 2.2(a) presents the simulated 

and measured |S11| performance of the stand-alone antenna  element  and  a  good  agreement  with

(a) (b) (c) 
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Figure 2.2: Simulated and measured performance of the CDL GPS antenna. a) |S11| and b) Broadside RHCP 
and LHCP gain. 
 

simulations is observed at both L2 and L1 bands. The measured and simulated realized broadside  

gains are presented in Figure 2.2(b). It is observed that the measured L2 and L1 band 3dB realized 

RHCP gain bandwidths are 26 MHz and 35 MHz, respectively. The measured left hand circularly 

polarized (LHCP) gain is 10 dB lower than the RHCP gain over the both GPS bands. Further 

 details about the antenna element (such as the design principles and trade-off studies regarding 

pin dimensions) are beyond the scope of this work [39]. 

2.3. Mutual Coupling within the 2×2 CDL GPS Array 

To characterize the mutual coupling level and associated field distributions, full wave 

simulations were carried out. Since the coupling among the ports of the diagonally positioned 

antenna elements (e.g. antenna #1 and #4 in Figure 2.1(a)) were found to be significantly (i.e. 13 

dB) lower than that of the adjacent elements; the coupling mechanism between the adjacent 

elements (i.e. a 2×1 array composed of antenna #1 and #2) was investigated further in detail. This 

choice allowed avoiding computationally expensive and time consuming simulations when array 

study was later on generalized  to  the  2×2 array  by  employing  the  900  rotational  symmetry  of 

(b) (a) 
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Figure 2.3: Simulated performance of the 2×1 CDL GPS antenna array. The geometrical configuration is 
identical to the first row of the 2×2 array shown in Fig. 1 without the BC-SRRs: a) Impedance match of 
antennas # 1 and # 2; b) Mutual coupling among the antenna ports. 
 

the array layout. Simulation and experimental studies performed on the BC-SRR loaded 2×2 array   

also demonstrated the validity of this design approach. Figure 2.3 depicts the simulated impedance 

matching and mutual coupling performance of the 2×1 CDL array (modeled from the top row of  

the 2×2 array) when BC-SRRs are not located between the antennas. All of the antenna ports (see    

Figure 1(a) for port numbering) within the 2×1 array continue to exhibit a good impedance match 

(|Sii|<-15 dB, i = 1, 2, 3, 4) at the center frequency of both GPS bands. The mutual coupling levels 

presented in Figure 2.3(b) indicate that coupling between the modes excited by ports 1-3 (i.e. |S31|) 

and ports 2-4 (i.e. |S42|) are significantly higher (> -15 dB) than that exhibited by ports 2-3 (i.e. 

|S32|) and ports 1-4 (i.e. |S41|). It is also important to note that the maximum value of the L2 band 

mutual coupling is -9 dB and this is 6 dB higher than that of the L1 band due to the relatively 

smaller electrical separation between the antennas at the L2 band frequencies. Therefore, the 

particular focus of this work is to maintain the L1 band performance and utilize the BC-SRRs to 

reduce L2 band critical mutual coupling responses (i.e. |S31| and |S42|). To utilize the BC-SRRs for 

suppressing the mutual coupling [40], the L2 band magnetic field (H) distribution within the array 

was subsequently investigated. Figure 2.4(a) depicts  the  H-field  distribution  at  z=250  mil  when

(b) (a) 
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Figure 2.4: Simulated magnetic field distribution within the 2×1 CDL GPS array.  z=250 mil when: a) 
port#1 and b) port#2 are excited. All the remaining ports are terminated with 50 Ω. 
 

port #1 is excited and other ports are terminated with 50 Ω matched loads. A volumetric field plot 

also reveals that a similar field distribution exists within the majority of the volume between the 

planes formed by the ground (i.e. z=0) and the antenna top surface (i.e. z=500 mil). As seen, the 

strongest H-field concentration nearby the antenna is on the side surfaces parallel to the y-z plane. 

Further analysis shows that the strongest electric (E) field concentration is on the side surfaces 

parallel to the x-z plane. Consequently, port #1 excitation gives a field distribution that resembles 

the E-plane coupling of patch antennas. The H-field distribution when port #2 is excited and other 

ports are terminated with matched loads is shown in Figure 2.4(b). This field distribution is similar 

to the one observed in H-plane coupling of patch antennas. Hence, the metamaterial resonator 

arrangements used in previous publications for decoupling linear arrays [10, 35] cannot readily 

provide mutual coupling suppression for the presented array. More specifically, the BC-SRRs 

should be strategically located and oriented to simultaneously interact with the fields associated 

(a)

(b)
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with the E and H-plane couplings. The H-field distribution within the highlighted dashed regions 

depicted in Figure 2.4(a) and (b) exhibits components that are oriented along the y-axis for both 

port excitations. Therefore, in these regions, periodically arranged BC-SRR stacks can potentially 

provide concurrent E and H plane mutual coupling suppression if their loop axes are also oriented 

along the y-axis. It is important to note that other types of MNG metamaterials such as the ones 

based on spiral resonators or edge coupled split ring resonators can also be utilized for the mutual 

coupling reduction. Since BC-SRRs were shown to provide the smallest size with comparable or 

less absorption loss [41], they were selected for implementation of the presented GPS array. 

2.4. Mutual Coupling within the 2×2 CDL GPS Array 

2.4.1. BC-SRR Design 

The design of the L2 band BC-SRR unit cell follows the well-established procedure 

described in [42]. Figure 2.5(a) and (b) depict the side and 3D views of the unit cell designed for 

L2 band operation. The key parameters of the unit cell are the relative dielectric constant of the 

substrate, the dimensions of the substrate, length and width of the oppositely oriented metallic 

open loops, and their gap size. For obtaining a small unit cell size, a 50 mil thick high permittivity 

Rogers 3010® (εr=10.2, tan(δ)=0.0022) substrate was selected for the design. The length of the unit 

cells along the z-axis was constrained to 0.5" in order to be identical with the antenna substrate 

thickness. The remaining dimensions were determined through parametric studies by modeling the 

unit cell with periodic boundary conditions and extracting the equivalent material properties from 

the transmission and reflection coefficients [43, 44]. Specifically, the unit cell dimensions shown 

in Figure 2.5 resulted in the desired L2 band operation with 196.8 mil periodicity (p) (<< λ0 at L2) 

along the y-axis. As seen from the simulated S-parameters in Figure 2.5(c), the |S21| response of 

this unit cell exhibits a transmission zero about 1.227 GHz.  The   extracted   effective   permeability  
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Figure 2.5: The details of the BC-SRR unit cell. a) BC-SRR side view, b) 3D view of a periodic arrangement 
of BC-SRRs with one cell highlighted, c) simulated |S11| and |S21| response, and d) extracted effective 
permeability of the designed BC-SRR cell. 

 

[43] in Figure 2.5(d) demonstrates that an MNG medium is clearly realized over the entire L2 band 

with a resonance frequency of 1.227 GHz.  

2.4.2. 2×1 CDL GPS Array Loaded with BC-SRRs   

Figure 2.6(a) depicts the 2×1 CDL GPS array when the BC-SRRs are placed at the 

locations identified in the previous section. A particular goal is to keep the number of the BC-SRR 

stacks to a minimum for low cost implementation and compactness. In addition, the good 

impedance matching of the antenna ports (i.e. |Sii |<-10 dB) must be maintained after the inclusion 

of the BC-SRRs. Therefore, several parametric studies were performed with two periodic stacks 

of BC-SRRs and this configuration was found to be adequate for mutual coupling suppression. 

The first set of parametric studies was carried out to determine the best position of the BC-SRRs 
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Figure 2.6: Parametric study for the 2×1 GPS array. a) 2×1 GPS array loaded with two stacks of BC-SRR 
unit cells and simulated L2 band S-parameters for different values of Δx: b) |S11|, c) |S22| d) |S31| and e) |S42|. 

 

by using stacks consisting of 5 unit cells. As shown in Figure 2.6(a), the top and bottom BC-SRR 

rows were moved along the ± x-axis with Δx=157.5 mil increments (i.e. half of the unit cell width) 

until good impedance matching performance and mutual coupling suppression were concurrently 

achieved. The simulated S-parameters in Figure 2.6(b)-(e) demonstrate that Δx=0 results in a 

deteriorated response in the impedance matching (i.e. |S11| and |S22|). Good impedance matching 

can be accomplished for both Δx=157.5 mil and Δx=315 mil. However, the latter provides a >5dB 

(a)

(b) (c) 

(d) (e) 
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Figure 2.7: Simulated L2 band mutual coupling within the 2×1 GPS array. For Δx=315 mil and when 
different numbers of unit cells are employed within the BC-SRR stacks: a) |S31| and b) |S42|. 
 

 
Figure 2.8: Simulated L1 band impedance matching and coupling of the 2×1 array. a) absent and b) present. 

 

better |S42| suppression at the center of the L2 band frequency. Figure 2.7 demonstrates the mutual 

coupling performance as the number of unit cells employed within the BC-SRR varied from 3 to 

5. It is clearly observed that the coupling suppression is better with larger numbers of unit cells. 

Specifically, |S31| and |S42| are concurrently below -25dB at center frequency of the L2 band for 

N=5. Increasing the number of unit cells beyond N=5 results in an overlap in BC-SRRs when the 

2×1 array is generalized to the 2×2 configuration by employing the 900 rotational symmetry (e.g. 

see Figure 2.1(a)). It is also important to characterize the potential effects of the L2 band BC-SRR 

stacks on the L1 band performance of the dual-band array. As shown in Figure 2.8, both L1 band 

(a) (b) 

(a) (b) 
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impedance matching and mutual coupling performances are not affected by the presence of the 

BC-SRRs and therefore, their effect is negligible in L1 band operation. 

To experimentally verify the mutual coupling performance, a 2×1 CDL GPS antenna array 

was fabricated and tested with and without the BC-SRRs. As expected, the impedance matching 

was not significantly affected due to the presence of the BC-SRR stacks (see Figure 2.9(a)). 

Moreover, the resonance frequencies of the antennas were almost maintained at 1226 MHz for the 

 

Figure 2.9: Measured L2 band S-parameters of the conventional and BC-SRR loaded 2×1 GPS array. a) 
Impedance matching, and b) mutual coupling performances. 

 

array within the presence of the BC-SRRs. Figure 2.9(b) presents the measured |S31| and |S42| of 

the array. The |S31| and |S42| are simultaneously suppressed by 10 dB and 15 dB, respectively. These 

results agree well with the simulated data in Figure 2.7.    

2.4.3. 2×2 CDL GPS Array Loaded with BC-SRRs  

The final design step is to employ the 900 rotational symmetry of the structure to construct 

the BC-SRR loaded 2×2 CDL GPS array (see Figure 2.1(a)). Differently than the 2×1 array, in the 

2×2 configuration, each antenna element is within the close proximity of the BC-SRRs from two 

sides. Nevertheless, the simulated mutual coupling between the antenna #1 and #2 in the absence 

and presence of the BC-SRRs demonstrates that |S31| and |S42| are still simultaneously reduced by 

(a) (b) 
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more than 9 dB around the center frequency of the L2 band as depicted in Figure 2.10. Moreover, 

both antennas continue to be well matched to their feed lines. As already noted, the design 

procedure was carried out by assuming that the mutual coupling between the adjacent antennas of 

the 2×2 array is identical. This can be verified from Figure 2.11(a) and (b) by observing that the 

E-plane (|S31|, |S62|, |S84| and |S75|) and H-plane (|S51|, |S42|, |S73| and |S86|) couplings of the adjacent 

antennas are almost identical. In addition, Figure 2.11(c) and (d) show simultaneous reduction of 

the E and H-plane couplings when BC-SRRs are present. 

  

Figure 2.10: Simulated S-parameters between antenna #1 and #2 within the 2×2 CDL GPS array. a) 
conventional, and b) BC-SRR loaded. 

 

  Although the design procedure was carried out by considering that the ports of the CDL 

GPS antennas can be individually excited, this is not the case in practical applications. In general, 

the antenna elements of GPS arrays are excited from a single feed that is connected to an internal 

quadrature hybrid [45]. Therefore, the mutual coupling performance for this specific case is of 

interest. This configuration will also be utilized in the following section for characterizing the 

nulling capability of the BC-SRR loaded obtained from a full wave electromagnetic solver were 

imported into Agilent Advanced Design System (ADS® [46]) and utilized in  conjunction  with  an  

(a) (b) 
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Figure 2.11: Simulated coupling between the adjacent antennas within the 2×2 array. a) E-plane coupling 
without BC-SRRs, b) H-plane coupling without BC-SRRs, c) E-plane coupling with BC-SRRs and d) H-
plane coupling with BC-SRRs. 

  

Figure 2.12: Simulated L2 band S-parameters between antennas #1 and #2 of the conventional and BC-SRR 
loaded GPS array. Each antenna is fed with an ideal quadrature hybrid: a) Impedance matching and; b) 
mutual coupling performance. 

(a) 

(c) 

(b) 

(d) 

(a) (b) 
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ideal hybrid model. Figure 2.12 presents the impedance matching and mutual coupling between 

the antennas #1 and #2 of the 2×2 CDL GPS array. Due to the quadrature hybrid [47], a broadband 

impedance matching is observed for both array configurations (see Figure 2.12(a)). On the other 

hand, the mutual coupling between the antenna ports is reduced by 10 dB at 1.227 GHz as shown 

in Figure 2.12(b) when the CDL GPS array is loaded with the BC-SRRs. The simulated impedance 

matching and mutual coupling results obtained among the ports of the adjacent antenna elements 

are very similar and not shown. Figure 2.13(a) demonstrates the fabricated prototype of the 2×2 

CDL GPS array loaded with the BC-SRRs. Each antenna element is fed using a quadrature coupler 

feed network [48] from the back side of the array as depicted in Figure 2.13(b). The fabricated   

BC-SRRs were manually glued to the ground plane. The simulated and measured mutual coupling 

between the antenna #1 and #2 are compared in Figure 2.14 and a good agreement is observed. 

The measured mutual coupling at 1.227 GHz with the absence and presence of BC-SRRs is -13 

dB and -25 dB, respectively. 

 

 

Figure 2.13: a) Fabricated 2×2 CDL GPS array loaded with the BC-SRRs. The BC-SRRs are glued to the 
ground plane, and b) the quadrature coupler feed networks were positioned at the backside of the array and 
attached to the 24"×24" brass ground plane using copper tapes. 

(a) (b)
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Figure 2.14: Comparison of the measured and simulated L2 band mutual coupling. The shown data is for 
the coupling between antennas #1 and #2 of the conventional and BC-SRR loaded 2×2 CDL GPS array. 

 

2.5. Nulling Capability 

Mutual coupling has been shown to negatively impact the performance of adaptive antenna 

arrays. For example, references [49, 50] demonstrated that mutual coupling reduces the signal-to-

interference-plus-noise ratio (SINR) of adaptive algorithms. It was also shown to degrade the 

accuracy of direction of arrival (DOA) algorithms [51, 52]  and affect nulling performance of linear 

dipole arrays in terms of null accuracy and depth [53]. In this section, we investigate the change 

in the nulling capability of the CDL GPS array when it is loaded with the BC-SRRs to exhibit a 

reduced amount of mutual coupling. As detailed in the following section, the embedded element 

patterns (i.e. radiation pattern of an antenna element when the other antennas of the array are 

terminated with 50 Ω matched loads) were utilized to determine the antenna weighting coefficients 

for generating nulls towards desired directions. It is important to note that calculating the antenna 

weights using this method is not feasible for practical applications as it requires the pre-knowledge 

of the embedded field patterns and the location of the interfering signals. In realistic scenarios, 

adaptive nulling algorithms are used to determine the antenna weights [49]. Nevertheless, the 
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method utilized below can be considered to be suitable for characterizing the nulling capability 

that can be accomplished by the adaptive algorithm as it makes use of the pre-knowledge of the 

realized embedded element gains and determines the weights using the least square method. 

Specifically, with this approach, we investigate the nulling capability of the 2×1 and 2×2 CDL 

GPS arrays. Through simulations and measurements, we demonstrate that the BC-SRR loaded 

CDL GPS arrays with reduced mutual coupling generate deeper nulls in the total array pattern with 

better angular accuracy as compared to the conventional CDL GPS array. 

2.5.1. Nulling Capability of the BC-SRR Loaded 2×1 GPS Array  

Generally speaking, an N element antenna array can produce a total of N-1 distinct nulls in 

its radiation pattern if the elements are excited with proper excitation coefficients (i.e. weights). 

Specifically, these weights need to satisfy the relation [54]: 

to generate the nulls along the desired directions ሺߠ௜, ߶௜ሻ (i = 1, 2,.., N-1), where ܧ௡ሬሬሬሬԦሺߠ௜, ߶௜ሻ and 

 ௡denote the embedded electric field pattern and weight of the ݊௧௛element, respectively. In theݓ

above equation, the weight of the first element is selected as 1, since the weights are complex 

quantities that are defined relative to each other and can be normalized with respect to the first 

element without loss of generality. For a circularly polarized antenna array, each electric field 

quantity in (2.1) can be written as a superposition of its corresponding RHCP and LHCP 

components. Therefore, (2.1) can be split into two distinct equations:  

  ,௜ߠଵሬሬሬሬറሺܧ ߶௜ሻ ൅෍ݓ௡ܧ௡ሬሬሬሬറሺߠ௜, ߶௜ሻ
ே

௡ୀଶ

ൌ 0                     (2.1)

  ,௜ߠଵோு஼௉ሺܧ ߶௜ሻ ൅෍ݓ௡ܧ௡ோு஼௉ሺߠ௜, ߶௜ሻ
ே

௡ୀଶ

ൌ 0     (2.2)
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Equations (2.2) and (2.3) form an over-determined system: 

If the cross polarization (i.e. LHCP patterns) of the antenna elements are not negligible and 

nulls are desired to be formed in the total field pattern (e.g. the jamming signals have different 

polarizations with respect to each other). The over-determined system of (2.4) can be solved for 

the weights using the least square method [55]. It is important to note that if the embedded antenna 

patterns of the array exhibit zero cross-polarization, the solution for the weights will be dominated 

by equation (2.2). Consequently, (2.4) would reduce to a square system and lead to weights that 

would ideally generate perfect nulls within the total field pattern. Hence, in this situation, the 

nulling capability of the array can be considered to be maximized. This ideal case, however, may 

not exist in a practical circularly polarized array. In addition, high levels of mutual coupling may 

imply that the embedded element patterns are distorted with respect to that generated by the stand-  

alone element and exhibit radiation with increased cross polarization. Therefore, reducing the 

mutual coupling within the array can improve the nulling capability. Figure 2.15 depicts the 

simulated and measured L2 band RHCP and LHCP elevation plane gain patterns of the 2×1 CDL 

GPS array at the ߶=900 azimuth cut when both elements are excited equally in-phase (i.e. 

 An in-house MATLAB [56] code was developed to construct the embedded RHCP .(1=2ݓ=1ݓ

and LHCP element patterns from the measurements taken by a linearly polarized reference horn. 

The same code was also extended to implement the equation system given in (2.4) and generate 

the array pattern subject to the particular weight choices. As seen, the simulated and measured gain 

patterns both demonstrate that the BC-SRR loaded arrays with the reduced mutual coupling exhibit  

  ,௜ߠଵோு஼௉ሺܧ ߶௜ሻ ൅෍ݓ௡ܧ௡ோு஼௉ሺߠ௜, ߶௜ሻ
ே

௡ୀଶ

ൌ 0  (2.3)

  ሾ̿ܣሿଶሺேିଵሻൈሺேିଵሻሾݓഥሿሺேିଵሻൈଵ ൌ ሾതܾሿଶሺேିଵሻൈଵ. 
(2.4)
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Figure 2.15: Elevation plane (߶ ൌ 90଴) L2 band gain patterns of the 2×1 GPS array. The presence and 
absence of BC-SRRs are considered: a) Simulated patterns over an infinite ground plane, b) Measured 
patterns over the 24"×24" brass ground plane. 
 
 
lower levels of LHCP gain. This is due to the lower cross-polarization gains observed in the 

embedded element patterns. Specifically, the measured LHCP gain of the array is 7 dB lower 

within the presence of the BC-SRRs at the broadside. It is important to note that the presented 

infinite ground plane simulations represent an ideal scenario. On the other hand, the measurements 

were taken and BC-SRRs over the large ground plane. Therefore, demonstrating the nulling  

capability through simulations and experiments are equally important to understand the 

performance and limitations of the presented BC-SRR loaded arrays. It should  also  be  noted  that   

the presence of the BC-SRRs does not significantly affect the RHCP gain as was also expected 

from the extracted permeability values (see Figure 2.15). More specifically, the simulated results 

show a radiation efficiency of 81% for the BC-SRR loaded array and this is only 6% lower than 

the efficiency of the unloaded array. Having verified that the cross-polarization gain of the BC-

SRR loaded array is reduced, we proceeded by utilizing equation (2.4) to calculate the weights for 

achieving a pattern null. As an example, Figure 2.16  presents  the simulated  gain  patterns  of  the 

(a) (b) 

1050-5-10-15-20-25-30dB

0
30

60

90

120

150

0
-30

-60

-90

-120

-150
180 

 1050-5-10-15-20-25-30dB

0
30

60

90

120

150

0
-30

-60

-90

-120

-150
180



www.manaraa.com

 

26 
 

Figure 2.16: Simulated elevation plane (߶ ൌ 90଴) L2 band gain patterns of the 2×1 GPS array. The absence 
[(a)] and presence [(b)] of BC-SRRs cases are studied when a total field pattern null is desired along the 
  .direction 300=ߠ
 
 
conventional and BC-SRR loaded 2×1 CDL GPS arrays when the desired pattern null is located 

atሺߠ, ߶ሻ= (300, 900). Specifically, the null depth in the total gain pattern is enhanced by 8 dB with   

the BC-SRR loaded array. It is evident from Figure 2.16(a) that the relatively high LHCP gain of 

the conventional array deteriorates its nulling capability. These results were also verified 

experimentally as shown in Figure 2.17. The total measured gain pattern of the BC-SRR loaded 

array exhibits a 9 dB deeper null and agrees well with the simulation based expectations. In 

general, we have observed similar null depth enhancements for various interferer directions with 

the BC-SRR loaded 2×1 CDL GPS array. As a second example, in Figure 2.17(c) and (d), we 

present the measured gain patterns for the conventional and BC-SRR loaded arrays when they are 

configured to generate a null towards ሺߠ, ߶ሻ = (00, 900). In this scenario, it is observed that the 

conventional array generates a -8 dB null, whereas the BC-SRR loaded array produces a -20 dB 

deep null towards the desired direction.   
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Figure 2.17: Measured elevation plane (߶=900) L2 band gain patterns of the 2×1 GPS array. The absence 
[(a)&(c)] and presence[(b)&(d)] of BC-SRRs cases are studied when a total field pattern null is desired 
along the θ=300 [(a)&(b)] and θ=00 [(c)&(d)] directions. 
 

2.5.2. Nulling Capability of the BC-SRR Loaded 2×2 GPS Array 

The simulations and measurements carried out by the BC-SRR loaded 2×2 CDL GPS array 

have demonstrated an improved nulling capability in terms of null depths and accuracy as 

compared to the conventional array. Specifically, the null depth is improved by more than 10 dB 
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when BC-SRRs are used. As an example, in Figure 2.18(a) we demonstrate a scenario in which 

three distinct nulls are desired at the θ=750 azimuth plane along the ߶=450, 1500 and 2500 

directions. The simulated normalized patterns show that both the conventional and BC-SRR loaded 

arrays can generate a null with similar depth along the ߶=2500 direction. However, the 

conventional array clearly fails to produce a null along ߶=450 direction due to its high cross   

polarization  level.  In  addition,  the  pattern  null  desired  along  the  ߶=1500  direction  is  miss- 

 

 
 

Figure 2.18: Simulated [(a)] and measured [(b)] normalized azimuth plane (θ=750) L2 band total gain 
patterns of the 2×2 CDL GPS array within the presence and absence of BC-SRRs. The total field pattern 
nulls are desired along the ߶=450, 1500 and 2500 directions. 
 

positioned by 150. On the other hand, the BC-SRR loaded array generates all three nulls along the 

desired directions. Moreover, the nulls are associated with < -20 dB lower realized gain as 

compared to the maximum realized gain. The measured total normalized patterns presented in 

Figure 2.18(b) are in good agreement with the performance predicted by the simulations. 

Specifically, the BC-SRR loaded array can generate the pattern nulls more accurately along the 

desired directions. Additionally, the nulls are associated with <-11dB lower measured realized 

gain as compared to the maximum realized gain by the array.   
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2.6. Concluding Remarks 

  The design and nulling capability of a compact 2×2 CDL GPS antenna array loaded with 

BC-SRRs were presented. By carefully choosing the location and orientation of the BC-SRRs 

within the array layout, a 10 dB L2 band mutual coupling reduction was realized without degrading 

the dual-band impedance matching performance of the antenna elements in the case of λ0/3.7 inter-

element spacing. Through simulations and experiments, it was demonstrated that the reduced L2 

band mutual coupling leads to a better nulling capability in terms of accuracy and null depth. 

Specifically, the measured null depths were improved by more than 8 dB due to the presence of 

the BC-SRR loading. The presented array fits within an overall footprint size of 4.3"×4.3" and can 

be potentially miniaturized further for different inter-element spacing. To the best of our 

knowledge, previous studies have not considered any methods for reducing the mutual coupling 

within compact circularly polarized GPS arrays and discussed their effects on the array nulling. 

Therefore, the presented results can motivate further design considerations and improvements. 

  



www.manaraa.com

 

30 
 

 
 
 

 

CHAPTER 3: MICROFLUIDIC BASED KA-BAND BEAM SCANNING  
 

FOCAL PLANE ARRAY 
 
 
3.1. Introduction 

 
Microfluidic enabled reconfigurability has been recently proposed for implementing a 

variety of novel microwave components. For example, dynamically moving the liquid metal slugs 

formed inside the microfluidic tubes was utilized in [57] as variable capacitors to develop a 

frequency tunable frequency selective surface (FSS). Likewise, a frequency-agile bandpass filter 

was realized in [58] by constructing the filter partially from liquid metal to dynamically reshape 

its resonators. In [59], the movement of liquid metal slug inside the microfluidic tubes was utilized 

to parasitically load a circular loop antenna to generate beam steering functionality. Microfluidic 

channels filled by liquid metal have been used in [60] and [61] to develop a novel class of 

flexible/stretchable dipole and patch antennas, respectively. Furthermore, a flexible patch antenna 

constructed by filling meandered microfluidic channels with liquid metal was introduced in [62] 

and a frequency reconfigurable annular slot antenna based on digital microfluidics was shown in 

[63]. Different from the aforementioned existing designs, this paper for the first time explores the 

use of microfluidic based reconfigurability for the realization of beam scanning focal plane arrays 

(FPAs). Specifically, a 1D 8 element FPA is designed to operate at Ka-band (30 GHz) and consists 

of interconnected microfluidic reservoirs and channels constructed by bonding 

Polydimethylsiloxane (PDMS) (εr=2.8, tanδ=0.02) and liquid crystal polymer (LCP) (εr=2.9, 

tanδ=0.0025) substrates. The antenna element of the FPA is a small volume (2.5 µl) of liquid metal 
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mercury residing inside a low loss Fluorinert™ FC-77 (εr=1.9, tanδ=0.0005) solution. The FPA is 

placed behind an 8 cm diameter extended hemispherical Rexolite (εr=2.56, tanδ=0.0026) lens. 

Beam scanning is accomplished by moving the liquid metal antenna among the reservoirs by using 

an external pump. The proximity coupled feed network of the array is passive (i.e. no RF switches)  

and  designed  strategically  to  accommodate  the  position  variation  of the  liquid  metal  antenna 

  

Figure 3.1: a) Conceptual illustration of a FPA located behind an extended hemispherical dielectric lens, 
and b) the proposed microfluidic enabled FPA consisting of reservoirs connected using micro channels. 
One reservoir acts as a patch antenna when is filled with liquid metal. A bi-directional pump is used to 
move the liquid metal among the reservoirs to scan the beam. 
 

element. This is in contrast to the conventional mm-wave high gain beam scanning array 

realizations that demand substantial hardware integration in their feed networks in terms of RF 

switches and phase shifters [21, 64-66]. Therefore, the technique is promising for high-power 

handling and the low-cost realization of millimeter-wave high gain beam scanning antenna arrays. 

The presented FPA is shown to operate with measured 70 half power beamwidth (HPBW), >21 dB 

realized gain, 3.3% |S11|<-10 dB bandwidth and provide ±300 beam scanning range in its elevation 

plane.   

(a) (b)
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3.2. Microfluidic Based Beam Scanning FPA Design 

Figure 3.1 demonstrates the lens, microfluidic reservoir and feed network parts of the 8 

element beam scanning FPA. The 8 cm diameter hemispherical Rexolite lens is designed to exhibit 

an extension length of 4.32 cm based on the guidelines provided in [27]. As shown in Figure 3.1(b), 

the FPA consists of 8 microfluidic reservoirs that are interconnected with channels. A reservoir is 

filled up with liquid metal Mercury (σ=1×106 S/m) to realize a patch antenna. The remaining 

volume of microfluidic reservoir and channel assembly is filled  out with  the  Fluorinert™  FC-77 

  

Figure 3.2: a) 3D view of the metal and substrate stack up of the designed array, and b) Top view of the 30 
GHz proximity fed patch antenna. 

 

solution acquired from Sigma Aldrich®. The antenna can be repositioned to the adjacent reservoirs 

with the aid of a single external pump mechanism that is capable to circulate the solution. The 

microfluidic reservoirs are placed over proximity coupled microstrip line feed network. The length 

of the feed stubs residing below the reservoirs were designed to be λg/2 (λg = 6.62 mm at 30 GHz) 

to present open circuit (O.C.) condition to the feed line when the reservoirs are empty of liquid 

metal. In addition, the separation between the stubs were designed to be λg to provide the necessary 

(b) (a) 
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O.C. conditions in order to direct the RF power to the liquid metal filled reservoir without needing 

any active RF switches. The substrate stack-up of the FPA is depicted in Figure 3.2(a). For 

prototyping purposes, the 250 μm thick microfluidic reservoir and channels are modeled inside 2 

mm thick PDMS substrate. The channel molds are sealed by bonding them to a 50 μm thick LCP 

layer. The PDMS-LCP assembly is placed over a 127 μm thick Rogers RT5880 (εr=2.2, 

tanδ=0.0007) substrate that supports the passive proximity coupled microstrip line feed network. 

Figure 3.2(b) presents the dimensions of the proximity fed patch antenna designed by using the 

Momentum suite of the Agilent’s Advanced Design System (ADS®). In these simulations, a semi- 

 

Figure 3.3: Simulated performance of the microfluidic based FPA array: a) |S11| performance and b) array 
normalized radiation pattern. The patterns are normalized with respect to pattern #4 maxima (߶=00). 
 
 

infinite half-space is assumed over the PDMS layer to model the presence of the electrically large  

Rexolite lens [67, 68]. The simulated |S11| performance as the liquid metal patch is moved from 

reservoir #1 to #4 over the passive proximity coupled feed network is depicted in Figure 3.3(a) 

(due to the array symmetry, throughout the manuscript, only the performance of the liquid metal 

(b) (a) 
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antenna in reservoirs #1 to #4 are presented). As seen, resonance frequencies of 30 GHz and similar 

|S11| performances are accomplished when any of the reservoirs individually is filled with liquid 

metal. This implies that the designed passive feed network is successful in routing the RF power 

to the liquid metal patch element. An in-house ray tracing MATLAB code [28] that utilizes the 

ADS® simulated patterns is employed for computing the far field patterns generated by the 

extended hemispherical lens. As demonstrated in Figure 3.3(b), moving the liquid metal patch 

among the reservoirs provides different excitation locations at the back surface of the extended 

hemispherical lens which in turn provides beam scanning capability. The FPA exhibits a half 

power beamwidth of 70 in both of the ߶=00 and 900 elevation planes, implying 29dB directivity 

according to Krauss’ approximation [69]. A ±300 field of view (FoV) is accomplished with 

individual element patterns overlapping at their half power beamwidths. 

 

Figure 3.4: The ray diagram along with the lens geometry. 
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As it was mentioned earlier, the far field radiation patterns radiated by the lens are 

calculated using a ray tracing code that employs the ADS® simulated radiation pattern of the patch 

antenna. As shown in Figure 3.4, the patch antenna is located at (∆x, ∆y, z = -l) relative to the used 

coordinate system. In order to calculate the radiated fields in the far-field, it is necessary to know 

the patch’s incident electric ܧ௣ሬሬሬሬറ at the lens-air interface (i.e., at ݎ ൌ ܴ, ߠ ൌ ሗ,ߠ 	߶ ൌ ߶ሗ , or ሺݔ, ,ݕ ሻݖ ൌ

ሺݔ௦, ,௦ݕ  :௦ሻ). It can be written as [70]ݖ

where ܧఏ௣ and ܧథ௣ are the patch’s radiated electric field in the ߠ෠௣ and ߶෠௣ directions, respectively. 

 ௣ሬሬሬሬറ is either simulated using ADS® or calculated using the patch cavity model [69]. In addition toܧ

) ௣ሬሬሬሬറ, the surface normal unit vectorܧ ො݊ሻ and ray vector (ݒറሻ are calculated as [71]: 

with its unit vector found as ݒො ൌ ௩ሬറ

|௩ሬറ|
. Since ݒറ is defined, the patch antenna’s location in terms of 

the spherical coordinates is given as:  ߠ௣ ൌ
గ

ଶ
െ tanିଵ ቌ

௩೥

ට௩ೣ
మା௩೤

మ
ቍ and	߶௣ ൌ cosିଵ ቌ

௩ೣ

ට௩ೣ
మା௩೤

మ
ቍ. At 

each point over the lens surface, a plane of incidence entirely including the vectors ̅ݒ and ො݊ can be 

defined. On the plane of incidence, ܧ௣ሬሬሬሬറ can be decomposed into its parallel and perpendicular 

polarizations as shown in Figure 3.4. To decompose	ܧ௣ሬሬሬሬറ into its parallel and perpendicular 

components, polarization unit vectors are first generated as follows [72]: 

  ௣ሬሬሬሬറܧ ൌ ,ఏ௣൫ܴܧ෠௣ߠ ሗߠ , ߶ሗ ൯ ൅ ߶෠௣ܧథ௣൫ܴ, ሗߠ , ߶ሗ ൯,  (3.1)

  ො݊ ൌ ݎ̂ ൌ ሗߠොsinݔ cos߶ሗ ൅ ሗߠොsinݕ sin߶ሗ ൅ ሗߠcosݖ̂   (3.2)

  റݒ ൌ ௦ݔොሺݔ െ ሻݔ∆ ൅ ௦ݕොሺݕ െ ሻݕ∆ ൅ ௦ݖሺݖ̂ െ ݈ሻ ൌ ௫ݒොݔ ൅ ௬ݒොݕ ൅   ௭ݒݖ̂ (3.3)

  ሬܲറୄ ൌ ො݊ ൈ  ොݒ (3.4)
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Then, the parallel ሺܧఏ௣ሻ and perpendicularሺܧథ௣ሻ components are calculated as: 

 

Since both of the components are known, the component of the electric field outside 

൫ܧሬറ ൌ ௫ܧොݔ ൅ ௬ܧොݕ ൅  :௭൯ the lens can be given as [72]ܧݖ̂

where (߬∥) and (߬ୄ) are, respectively, the Fresnel’s parallel and perpendicular transmission 

coefficients that are given by [73]: 

 

 

 

ୄ̂݌ ൌ
ሬܲറୄ

ห ሬܲറୄ ห
 

  ∥റ݌ ൌ ୄ̂݌ ൈ .ොݒ (3.6)

  ఏ௣ܧ ൌ ௣ሬሬሬሬറܧ ∙  ∥̂݌ (3.7)

  థ௣ܧ ൌ ௣ሬሬሬሬറܧ ∙  ୄ̂݌ (3.8)

  ௫ܧ ൌ ൫ܧథ௣൯߬ୄሺݔො ⋅ ሻୄ̂݌ ൅ ൫ܧఏ௣൯߬∥ሾሺݔො ⋅ ሻ∥̂݌ cosሺ߰௧ െ ߰௜ሻ െ ሺݔො ⋅ ොሻݒ sinሺ߰௧ െ ߰௜ሻሿ   (3.9)

  ௬ܧ ൌ ൫ܧథ௣൯߬ୄሺݕො ⋅ ሻୄ̂݌ ൅ ൫ܧఏ௣൯߬∥ሾሺݕො ⋅ ሻ∥̂݌ cosሺ߰௧ െ ߰௜ሻ െ ሺݕො ⋅ ොሻݒ sinሺ߰௧ െ ߰௜ሻሿ   (3.10)

  ௭ܧ ൌ ൫ܧథ௣൯߬ୄሺ̂ݖ ⋅ ሻୄ̂݌ ൅ ൫ܧఏ௣൯߬∥ሾሺ̂ݖ ⋅ ሻ∥̂݌ cosሺ߰௧ െ ߰௜ሻ െ ሺ̂ݖ ⋅ ොሻݒ sinሺ߰௧ െ ߰௜ሻሿ   (3.11)

 
߬∥ ൌ

௜߰ݏ݋௥ܿߝ√2
௜߰ݏ݋௥ܿߝ ൅ ඥߝ௥ െ ሺsin߰௜ሻଶ

 
(3.12)

 
߬ୄ ൌ

௜߰ݏ݋2ܿ
௜߰ݏ݋ܿ ൅ ඥߝ௥ െ ሺsin߰௜ሻଶ

.  (3.13)

(3.5) 
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In (3.9) - (3.13), ߝ௥, ߰௜, ߰௧ are the dielectric constant of the lens, angles of incidence and 

transmission, respectively. The incident angle, ߰௜, can be calculated as ߰௜ ൌ cosିଵሺ ො݊.  ොሻ, andݒ

thus, ߰௧ is found using the Snell’s law as ߰௧ ൌ sinିଵሺ√ߝ௥sin߰௜ሻ.  

Having ൫ܧሬറ൯ calculated, the magnetic field outside the lens ൫ܪሬሬറ൯ is given as ܪሬሬറ ൌ ଵ

ଵଶ଴గ
ሺ̂ݏ ൈ

 :is the ray unit vector outside the lens and its components are given by [72] ݏ̂ ሬറሻ, whereܧ

 

 

Once ൫ܧሬറ൯ and ൫ܪሬሬറ൯ are obtained just outside the lens’s surface, the equivalent surface electric ൫ܬറ௦൯ 

and magnetic ൫ܯሬሬറ௦൯ current densities on the lens’s surface can be calculated using the Huygens’s 

principle [71]: 

Hence, the electric field at the far-field radiated by the lens’s aperture is found by using the far-

field radiation integrals [71]: 

 

and the radiation integrals are defined as [71]: 

  ௫ݏ ൌ ௫ݒ cosሺ߰௧ െ ߰௜ሻ ൅ ሺݔො ∙ ሻ∥̂݌ sinሺ߰௧ െ ߰௜ሻ (3.14)

  ௬ݏ ൌ ௬ݒ cosሺ߰௧ െ ߰௜ሻ ൅ ሺݕො ∙ ሻ∥̂݌ sinሺ߰௧ െ ߰௜ሻ (3.15)

  ௭ݏ ൌ ௭ݒ cosሺ߰௧ െ ߰௜ሻ ൅ ሺ̂ݖ ∙ ሻ∥̂݌ sinሺ߰௧ െ ߰௜ሻ. (3.16)

  റ௦ܬ ൌ ො݊ ൈ  ሬሬറܪ (3.17)

   

  ሬሬറ௦ܯ ൌ െො݊ ൈ  .ሬറܧ (3.18)

 
ఏܧ ൌ െ

݆݇݁ି௝௞௥

ݎߨ4
൫ܮథ ൅ ଴ߟ ఏܰ൯ 

(3.19)

 
థܧ ൌ

݆݇݁ି௝௞௥

ݎߨ4
൫ܮఏ െ  ,଴ܰథ൯ߟ

(3.20)



www.manaraa.com

 

38 
 

 

where ݇ is the propagation constant, S is the hemispherical surface, ߟ଴ is the free space intrinsic 

impedance and equals to 120ߨ	Ω, ݎ is the distance to the observation point measured the origin of 

the coordinate system, ݎᇱ is the distance to the current sources from the origin of the coordinate 

system, ߰ is the angle between ݎ and ݎᇱ, and ݀ݏᇱ ൌ ܴଶ sin ᇱߠ  .ᇱ݀߶ᇱߠ݀

3.3. FPA Radiation and Switching Performance 

It is important to note that the resonant nature of the utilized passive feed mechanism will 

result in performance degradation due to radiation leakage as realization of perfect open circuit 

stub terminations is not practically possible. In addition, a long microstrip line was used to feed 

the antenna from the side of the lens (see Figure 3.7(a)) which increases the network loss. 

Therefore, to quantify the loss associated with the feed network, computational studies were 

performed by comparing radiation pattern performance of the microfluidic based FPA to that of a 

stand-alone patch antenna excitation (i.e. without any feed line) located at the lens back surface. 

Figure 3.5(a)-(d) presents these radiation pattern comparisons for all FPA elements. It is observed 

that the feed network loss accounts for 4.06 dB, 3.88 dB, 3.90 dB, and 3.82 dB reductions in 

realized gain for the patch antenna locations #1, #2, #3, and #4, respectively. The average feed 

network loss is therefore 3.92 dB. This is comparable to the performance of a conventional 8 

element FPA implementation that would utilize a total  of 7  SP2T  switches  and  activate  a  patch 

element through the series connection of 3 SP2T switches. Commercially available Ka-band SP2T 

switches [74] exhibit ~1 dB  insertion  loss  and  the  conventional  feed  network  will  potentially 

  ܰ ൌඵܬ௦݁௝௞௥
ᇲ௖௢௦ట

ௌ
 ᇱݏ݀ (3.21)

  ܮ ൌ ඵܯ௦݁௝௞௥
ᇲ௖௢௦ట

ௌ
 ,ᇱݏ݀ (3.22)
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Figure 3.5: Microfluidic FPA pattern comparisons with a standalone patch located behind the lens at the 
position of a) #1, b) #2, c) #3, and d) #4. 
 

exhibit >3 dB insertion loss due to the additional interconnects, microstrip line sections, and bends. 

The radiation patterns presented in Figure 3.5 reveals an enlargement in the sidelobe level for the 

microfluidic based beam scanning array within the ±300 scan range due to the feed network 

radiation. Specifically, the sidelobe level due to feed network radiation is relatively constant in the 

scan range and 15 dB below the main beam. In addition to the radiation performance, the array 

beam scanning time was characterized using mp6 piezoelectric micropumps and mp-x controlling 

unit acquired from Bartels™ as shown in Figure 3.6(a). Two micropumps are cascaded in series to 

form a bi-directional pumping unit. These pumps were able to move the liquid metal patch to the 
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adjacent reservoir in 70msec as depicted in Figure 3.6(b). The switching time can be potentially 

reduced down to a few msec using mechanically faster pumps.   

   

Figure 3.6: a) Switching speed test setup, and b) snapshots of the liquid metal antenna moving among two 
adjacent reservoirs. 

 

3.4. Microchannels Fabrication 

The microfluidic channels were fabricated using the PDMS micromolding technique. To 

obtain the mold layer, negative photoresist (SU-8 2075) was spun onto a silicon wafer and then 

patterned with a UV light source. The PDMS oligomer and crosslinking prepolymer of the PDMS 

agent from a Sylgard™ 184 kit (Dow Corning) was mixed in a weight ratio of 10:1, poured onto 

the SU-8 mold, and then cured at room temperature for 24 hours to prevent PDMS shrinking due 

to heat [75]. Bonding the channels to a 50 μm LCP was accomplished by using APTES (3- 

Aminopropyltriethoxysilane) functionalized SU-8 as an intermediate layer between the PDMS and 

LCP layers [76]. SU-8 was spun on 50 μm thick LCP substrate and soft baked subsequently. The 

baked photoresist was then exposed to UV and post baked again. After developing, the SU-8 was 

(b) (a) 
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hard baked. The surface of the SU-8 coated LCP substrate was then activated by oxygen plasma 

treatment. Later, the substrate was placed in a 1%v/v APTES solution heated to 800 C for 20 mins. 

Subsequently, the functionalized SU-8 and the fabricated PDMS micro channel mold were 

exposed to oxygen plasma. The two surfaces were placed in conformal contact for 1 hr. After this 

process, the two surfaces were irreversibly bonded to each other due to the formation of a strong 

Si-O-Si covalent bond [77]. 

3.4. Measured Performance 

Figure 3.7(a) depicts the lithographically fabricated array feed network. In order to obtain 

a robust structure, the machined lens was placed in custom built Styrofoam holder as shown in 

 

Figure 3.7: a) Fabricated feed network, b) front view of the measured prototype, and c) back view. 

 

Figure 3.7(b). The feed network and channels were then flushed to its bottom surface using tape 

as depicted in Figure 3.7(c). For measurement ease within the anechoic chamber, syringes were 

used to move the liquid metal antenna. This is due to the bulky Bartels controller unit that would 

hinder the pattern measurements. The array |S11| shown in Figure 3.8(a) was measured using an 

Agilent N5227A PNA. The array exhibited a matched impedance response at 30 GHz when 

reservoirs #1 to #4 were individually hosting the liquid metal patch. The beam scanning capability 

of the array was verified by measuring its realized gain patterns in the ߶=00 elevation plane. As 

(a) (b) (c) 
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shown in Figure 3.8(b), the array scanned the beam as the liquid metal antenna was moved among 

the reservoirs. Table 3.1 summarizes the expected and measured scan angles and measured 

maximum gain. As it can be inferred from the table, the measured and expected scan angles are in 

a very good agreement. The small discrepancy is due to the possible misalignment while installing 

the array at the lens backside. A maximum realized gain of 24.8 dB was measured when the liquid 

metal antenna was in reservoir #3, whereas the lowest was 21.5dB when it was in reservoir #1. In 

average, the array exhibited 5.7dB loss relative to the calculated 29 dB directivity.  The  measured  

 

Figure 3.8: Measured performance: a) |S11| and b) normalized gain patterns. 

 

Table 3.1: The array’s measured and simulated beam scanning and gain performances 

Antenna in Reservoir:  #1 #2 #3 #4 

Scan Angle 
(Measured, Calculated) 

(320,300) (250,220) (140,130) (70,40) 

Measured Gain [dB] 21.5 23.2 24.8 23.9 
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loss values were comparable to the simulated 3.9 dB feed network loss reported in Section II. The 

additional 1.8 dB loss was identified to be due to the connector loss and lens-air interface reflection 

[16]. 

3.5. Concluding Remarks 

A novel microfluidic based 1D FPA capable of providing beam scanning based on 

microfluidic principles was presented. Specifically, the array included 8 microfluidic reservoirs 

that are interconnected with microchannels. A liquid metal volume embedded inside dielectric 

solution was used to construct the antenna element and was moved to different physical reservoir 

locations to provide beam scanning. The antenna element was a proximity coupled patch antenna. 

A strategic switch-free feed network was developed to route the input power to the liquid metal 

filled reservoir without causing impedance mismatches. The impedance matching and realized 

gain performances of the array were computationally demonstrated and experimentally verified. 

The array operated with a peak realized gain of 24.8 dB and provided ±300 scan range in the 

elevation plane using a dielectric extended hemispherical lens. This is comparable to a switch 

based FPA. Hence, the proposed array is promising for low cost implementation. It should be noted 

that the presented FPA can be employed with different type of lenses to provide an overall lower 

profile. New feed network designs should be investigated to reduce the radiation loss and possibly 

obtain continuous beam scanning. In addition, different types of commercially available 

micropumps are being investigated for faster beam scanning capabilities. 
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CHAPTER 4: PASSIVE FEED NETWORK DESIGNS FOR MFPAs AND THEIR  
 

PERFORMANCE EVALUATION 
 

 
4.1. Introduction 

 
The emergent need for large capacity and high data rate communication links demands 

using highly directive antenna arrays with beam-scanning functionality [78, 79]. These capabilities 

can be obtained using different technologies such as phased arrays [15, 21, 64, 66, 80-83], focal 

plane arrays (FPAs) [16, 84, 85] and reflectarray antennas [17, 86-90]. At the mm-wave band, 

however, phased arrays and FPAs remarkably suffer from high cost and loss due to the extensive 

hardware integrated in their feed networks. Likewise, reflectarrays require bulky components to 

perform mechanical beam scanning.  

To achieve beam-scanning capability with significant RF and mechanical hardware 

reduction, our group has recently introduced a 1D microfluidic based focal plane array (MFPA) 

[91] that was discussed in the previous chapter. Specifically, a high-gain 30GHz beam has been 

scanned in elevation plane by re-positioning a liquid metal patch antenna element inside a 

microfluidic channel located at the focal plane of an extended hemispherical dielectric lens. The 

MFPA employed a resonant corporate microstrip line feed network that was strategically designed 

to be all-passive. The movement of the patch element along the microfluidic channel was 

performed sequentially by using a bi-directional micropump unit. Consequently, beam-scanning 

was accomplished with a compact and cost effective system without resorting to active RF devices.  

Microfluidic based reconfigurability has been recently proposed to implement a variety of 

RF devices to achieve superior performances in terms of high power handling, wideband frequency 
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tuning range, and low cost. For example, continuously movable liquid metal slugs formed inside 

microfluidic tubes or channels have been utilized to realize wideband tunable frequency selective 

surfaces (FSS), bandpass filters [26, 58], and monopole antennas [92]. A movable liquid metal 

slug formed inside a microfluidic tube has been used as a parasitic reflector to steer the radiation 

pattern of a loop antenna [59]. Stretchability of the polymers hosting the liquid metal filled 

microfluidic channels have been used for demonstrating tunable dipole [93]  and patch [94] 

antennas. Stretchability has also been proposed to implement flexible antennas and sensors [25, 

95-97].  

The MFPA introduced in chapter II [91] is the first-time that the microfluidic based 

reconfigurability has been used to implement high-gain beam-scanning. However, chapter II has 

not provided design details of the utilized passive feed network, analyzed its bandwidth/loss 

performance and addressed the high side lobe level (SLL) issue occurring due to the radiation 

leakage. This chapter considers the design details and performance evaluation of different passive 

network layouts that can potentially be utilized to excite MFPAs. Specifically, in Sections II and 

III, resonant corporate, resonant straight, and non-resonant straight microstrip line feed networks 

are introduced and their bandwidth/loss performances are investigated using transmission line 

theory. The MFPA performance when using the introduced feed networks is evaluated in terms of 

radiation pattern, loss and bandwidth by making use of an in-house ray tracing code [28]. It is 

shown that the straight networks reduce the SLL by 10 dB relative to the corporate network. The 

resonant network fed MFPA is shown to exhibit similar bandwidth performance for increasing 

array size whether the feed network layout is straight or corporate. On the other hand, the non-

resonant network offers the bandwidth performance independent of the of the array size. To 

validate the SLL and bandwidth analysis,  in Section IV, an 8  element  straight  resonant  network 
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Figure 4.1: a) The generic layout of a 1D MFPA excited with a resonant corporate microstrip line feed 
network. The array consists of a microfluidic channel located at the focal plane of a microwave lens and 
hosts N locations to generate N beams. The antenna element is sequentially moved among these locations 
using a micropump, and b) equivalent circuit of the feed network when the antenna element is in location 
#i. 
 

fed MFPA is fabricated and tested. The measured ±250 field of view (FoV), 23.5 dB realized gain 

performance and 4% |S11|<-10 dB bandwidth agree well with the expectations from theoretical and  

numerical analysis. Additionally, different than the previous chapter’s work that relied on liquid 

metal, the antenna element of the MFPA is implemented from a metalized plate by carrying out 

flow characterizations on various microfluidic channel geometries. This metalized plate approach 

paves the way for reliable and non-toxic liquid-metal-free microfluidic reconfigurable devices with 

higher efficiency and power handling capabilities. 

4.2. Resonant Feed Networks for MFPAs 

4.2.1. Corporate Feed Network  

The general layout for a 1D MFPA excited with a corporate microstrip line feed network 

is depicted in Figure 4.1(a). It consists of a microfluidic channel placed at the focal plane of a 

microwave lens for beam scanning. It is important to mention that although the presented work 

uses an extended hemispherical dielectric lens [27], different types of lenses such as Fresnel lenses 

[98] and frequency selective surface based synthesized lenses [99-101] can be utilized by the 

proposed MFPA layout without loss of generality. As shown in Figure 4.1(a), the microfluidic 

(a) (b)x

y
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channel hosts an even number (N) of locations to generate a total of N beams in elevation plane. 

The patch antenna element inside the microfluidic channel is sequentially moved among the 

locations by using a bi-directional micropump unit. At any location, the excitation of the patch 

antenna is achieved by the microstrip line stubs either by a proximity or aperture coupling 

mechanism. Each stub is designed to be λg/2 in length where λg denotes the guided wavelength at 

the design frequency f0. This ensures that all the stubs that are open circuit (OC) terminated without 

the loading of the antenna element will also exhibit OC conditions at the junctions where they are 

connected to the main microstrip feed line. In addition, the N antenna locations are designed to be 

λg apart to carry the OC conditions at the stub junctions along the main microstrip line. This feed 

network layout clearly operates based on the resonance of λg/2 stubs and ideally allows the RF 

input power to be totally delivered to the antenna by forcing the OC condition at the microstrip 

line junctions. However, in a practical realization, the unloaded stubs exhibit a finite quality factor 

(Qstub) that results in power loss and radiation leakage increasing with N. Moreover, the impedance 

matching bandwidth also becomes dependent on N due to the resonance mechanism. 

To evaluate the |S11|<-10 dB bandwidth performance, the feed network is analyzed by 

making use of the transmission line theory. Figure 4.1(b) depicts the equivalent circuit of the feed 

network when the antenna element is in location #i. The antenna element loaded stub is modeled 

with the input admittance seen from its end Yantenna. If i=1, then input admittance Yin1L is given as 

[47]: 

otherwise: 

  ௜ܻ௡ଵ௅ ൌ ଴ܻ
௔ܻ௡௧௘௡௡௔ ൅ ଴ܻ tanhሺߣߙ௚ ൅ ௚ሻߣߚ݆

௢ܻ ൅ ௔ܻ௡௧௘௡௡௔ tanhሺߣߙ௚ ൅ ௚ሻߣߚ݆
,  (4.1)

  ௜ܻ௡ଵ௅ ൌ ଴ܻ
௦ܻ௧௨௕ ൅ ଴ܻ tanh൫ߣߙ௚ ൅ ௚൯ߣߚ݆

௢ܻ ൅ ௦ܻ௧௨௕ tanh൫ߣߙ௚ ൅ ௚൯ߣߚ݆
,  (4.2)
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where Y0, β, and α denote the transmission line’s characteristic admittance, propagation constant, 

and attenuation constant, respectively. The input admittance seen by the source towards the left 

(i.e. YinL in Figure 4.1(b)) is evaluated by updating the admittance value at each stub junction 

according to the below algorithm (assuming the antenna is at one of the locations in the left half 

of the feed network): 

for k= 2: N-1  

if k = 2×(i-1):  

else if modulus (k,2) = 0  

else if k = N-1  

else 

end 

end 

Since the feed network is symmetric, the above algorithm can also be used to evaluate the 

input admittance seen by the source towards the right side (i.e. YinR in Figure 4.1(b)).  For this, the 

subscript L in equations (1) to (7) should be replaced with subscript R. Moreover, equation (4) 

 ௦ܻ௧௨௕ ൌ ଴ܻ tanhሾ0.5ሺߣߙ௚ ൅ ݆ ௚ሻሿ, (4.3)ߣߚ

 ௜ܻ௡௅ሺ௞ሻ ൌ ௜ܻ௡௅ሺ௞ିଵሻ ൅ ௔ܻ௡௧௘௡௡௔  (4.4)

 ௜ܻ௡௅ሺ௞ሻ ൌ ௜ܻ௡௅ሺ௞ିଵሻ ൅ ௦ܻ௧௨௕  (4.5)

  ௜ܻ௡௅ ൌ ௜ܻ௡௅ሺ௞ሻ ൌ ଴ܻ
௜ܻ௡௅ሺ௞ିଵሻ ൅ ଴ܻ tanhሾ0.5൫ߣߙ௚ ൅ ௚൯ሿߣߚ݆

଴ܻ ൅ ௜ܻ௡௅ሺ௞ିଵሻ tanhሾ0.5൫ߣߙ௚ ൅ ௚൯ሿߣߚ݆
		  (4.6)

  ௜ܻ௡௅ሺ௞ሻ ൌ ଴ܻ
௜ܻ௡௅ሺ௞ିଵሻ ൅ ଴ܻ tanhሾ൫ߣߙ௚ ൅ ௚൯ሿߣߚ݆

଴ܻ ൅ ௜ܻ௡௅ሺ௞ିଵሻ tanhሾ൫ߣߙ௚ ൅ ௚൯ሿߣߚ݆
.  (4.7)
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should be ignored and only (5)-(7) are used. If the antenna is located on the right hand side of the 

network (i.e. i > N/2), the index i holding the antenna location in the algorithm should be updated 

as i = (N+1-i) and equation (4) should not be used when evaluating ௜ܻ௡௅. Once ௜ܻ௡௅ and ௜ܻ௡ோ are 

evaluated, the S11 is calculated as: 

The outlined analysis does not include the discontinuity effects of the transmission line 

junctions. However, it provides a rigorous estimation for the S11 response of a MFPA excited by a 

corporate feed network as it accounts for the losses and the frequency dependent nature of the 

antenna admittance. Therefore, as will be shown in the following, the provided analysis 

conveniently estimates the bandwidth performance for arbitrary N and agrees well with the 

simulated |S11| responses. 

4.2.2. Performance of Corporate Fed MFPA 

Throughout this chapter, an MFPA operating behind an extended hemispherical dielectric 

lens (Rexolite, (εr=2.56, tanδ=0.0026)) at 30 GHz is considered for numerical examples and 

experimental verification [27]. The feed network is based on a microstrip line layout designed on 

a 200 μm thick RO4003C material (εr=3.55, tan(δ)=0.0027) [102]. A 100 μm Liquid Crystal 

Polymer (LCP) layer (εr=2.9, tan(δ)=0.0025) [103] is used to separate the microfluidic channels 

carrying the proximity coupled patch antenna element from the feed network. The microfluidic 

channels are formed inside a 2 mm thick Polydimethylsiloxane (PDMS) (εr=2.8, tan(δ)=0.02) 

[104] and sealed by bonding to the LCP layer. Due to the electrically large nature of the dielectric 

lens, a semi-infinite layer of Rexolite is used to model the presence of the lens [67, 68]. Agilent 

Advanced Design System (ADS) Momentum and Schematic suites are used for the simulation 

purposes [105].  

 ଵܵଵ ൌ
଴ܻ െ ௜ܻ௡

଴ܻ ൅ ௜ܻ௡
ൌ ଴ܻ െ ሺ ௜ܻ௡௅ ൅ ௜ܻ௡ோሻ

଴ܻ ൅ ሺ ௜ܻ௡௅ ൅ ௜ܻ௡ோሻ
.  (4.8)
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Figure 4.2: a) a λg/2 resonator, b) simulated S11 on the Smith chart, and c) simulated absolute input 
impedance of the λg/2 resonator. 

 

The synthesis of the corporate feed network begins with the design of a Z0=50 Ω λg/2 long 

microstrip line open circuit resonator at f0=30 GHz. Figure 4.2(a) depicts the resonator that is 2.615 

mm long (lstub) and 0.38 mm wide (wstub). In order to determine the stub’s width, a transmission 

line terminated with two 50 Ω ports was simulated. The initial width was calculated assuming only 

the presence of the RO4003C [47]. Later, the width was reduced until the reflection coefficient of 

the simulated transmission line was < -40 dB. On the other hand, the stub’s length was found by 

simulating a one port transmission line and varying its length until the resonance condition was 

obtained. Thereby, β was calculated as ߚ ൌ ߨ ݈௦௧௨௕.⁄  The simulated S11 performance on the Smith 

chart of the open stub resonator reveals a resonance at 30 GHz as shown in Figure 4.2(b). The 

bandwidth of the stub is calculated from its extracted absolute input impedance shown in Figure 

4.2(c) [47]. Specifically, the bandwidth is 0.6 GHz and results in ܳ ௦௧௨௕ ൌ 	 ଴݂ ⁄ܹܤ ൌ 50[47]. From 

this, the attenuation constant is calculated as ߙ ൌ ߚ 2ܳ௦௧௨௕.⁄   
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The next step in the synthesis of the feed network is to design the 30 GHz patch antenna 

element. As shown in Figure 4.3(a), the antenna is excited by the designed λg/2 long microstrip 

stub using proximity coupling. The antenna exhibits 7 dB gain and 6% |S11|<-10 dB bandwidth. 

To utilize the frequency dependent admittance of the antenna in transmission line theory based 

 

Figure 4.3: a) Layout of the proximity coupled patch antenna. It is designed at 30 GHz. b) extracted 
equivalent lumped element circuit model of the antenna; c) comparison of the |S11| obtained from full wave 
and equivalent circuit simulations, and d) frequency dependence of the S11 on the Smith chart. 

calculations, an equivalent lumped element circuit is extracted [106] as shown in Figure 4.3(b). 

The S11 response of the equivalent lumped element circuit agrees well with that of the antenna as 

shown in Figure 4.3(c)-(d). 

Once the antenna admittance (Yant), λg, α, and β are known, the transmission line theory 

based algorithm detailed in the previous section can be utilized to estimate the array bandwidth for 

(a) (b) 

(c) 

10
Antenna
Equivalent Circuit
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a desired N. Figure 4.4(a) shows the variation of the array bandwidth with N when the antenna is 

at location #1 and #N/2. It is observed that the bandwidth decreases with increasing N for either 

antenna locations. However, the bandwidth is limited by the antenna positioned at location #N/2. 

For instance, the array exhibits 2.7% and 0.7% bandwidths for N=8 and N=16, respectively. Figure 

4.4(b) shows the |S11| for N=4, 8 and 16 when the antenna occupies the location #N/2. The 

bandwidth reduction with increasing N is evident and coupled with impedance matching 

 

Figure 4.4: a) The bandwidth performance of the resonant corporate feed network excited MFPA as a 
function of N when the location #1 and #N/2. The bandwidth decrease with N, and b) the array |S

11
| for 

different N values when the antenna is at location #N/2. 

 

deterioration due to increasing loading effect of the finite Q open stubs. To verify the transmission 

line theory based results and investigate the radiation performance, an N=8 element MFPA was 

subsequently designed by using ADS Momentum. The synthesis of the feed network started with 

connecting a λg long (i.e. 2×2.615 = 5.23 mm) microstrip line to the open stub resonator (see Figure 

4.5(a)). Subsequently, the second stub was added and another λg long microstrip line was 

connected as depicted in Figure 4.5(b). This procedure was repeated twice more to generate the 

circuits shown in Figure 4.6(c) and (d). Note that different than the others, the circuit shown in 

(a) (b) 

N=4
N=8
N=16
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Figure 4.5(d) was connected to a λg/2 long microstrip line. Finally, the circuit in Figure 4.5(e) was 

formed by combining the circuit in Figure 4.5(d) with its mirrored image with respect to the 

indicated reference plane. Figure 4.5(f) demonstrates the simulated S11 performances of the circuits 

in Figure 4.5(a) to (e) on the Smith chart without any antenna element loading. Each S11 curve 

intersects with the positive real axis of the S11 plane at 30 GHz as expected from the resonant nature 

 
Figure 4.5: Design procedure of a resonant corporate feed network consisting for 8 element MFPA. a) single 
stub connected to a λg microstrip line, b) two stubs, c) three stubs, d) four stubs, e) completed feed network 
constructed by having the design in (d) mirrored around the symmetry plane, and f) simulated S11 curves 
on the Smith chart. All curves intersect with the positive real axis of the S11 plane at 30 GHz. 

(f)
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S11
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Figure 4.6: The |S11| performance of the 8 element MFPA excited by the resonant corporate feed network. 
The antenna is moved among locations #1-#4: a) transmission line theory and b) full wave simulation. 

 

of the circuit layout. However, the intersection point gradually moves toward the center of the 

Smith chart as more stubs are added. This demonstrates that the finite quality factor of the stubs 

generates a resistive loading mechanism that is associated with attenuation and radiation leakage 

based losses. Figure 4.6(a) shows the calculated |S11| of the MFPA using the transmission line 

theory when the antenna is positioned at locations #1, #2, #3, and #4. Due to the symmetry of the 

feed network, the MFPA performance is investigated only for the cases when the patch antenna 

element is positioned at these locations. It is observed that the feed network enables a good |S11|<-

15 dB impedance match at 30GHz regardless of the antenna location. |S11| performances obtained 

from full wave simulations are shown in see Figure 4.6(b). The transmission line theory analysis 

and the full wave simulations agree very well on the 2.6% |S11|<-10 dB bandwidth. The slight 

mismatch between the resonance frequencies of the two methods can be attributed to the 

unaccounted microstrip bends and T-junctions in the transmission line theory analysis. 

(a) (b) 

Antenna in location #1
Antenna in location #2
Antenna in location #3
Antenna in location #4
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Figure 4.7: The radiation pattern of the 8 element MFPA excited by the resonant corporate feed network. 
The antenna is moved among locations #1-#4. 

 

The radiation pattern of the MFPA was calculated by numerically integrating the radiation 

from equivalent currents on the surface of the hemispherical lens. The hemispherical lens had 4 

cm radius and 4.32 cm extension length based on the design equations presented in [27]. The  

equivalent currents were evaluated using ray tracing and the fields radiated into the semi-infinite 

Rexolite layer (numerically evaluated by the ADS Momentum) were utilized as incident fields at 

the lens-air interface [28]. Figure 4.7 shows the normalized radiation patterns of the MFPA in the 

x-z elevation plane. Specifically, the beams generated by the patch antenna element at locations #1 

to #4 all exhibit 70 half power beam width (HPBW) corresponding to 29 dB directivity based on 

Krauss’ approximation [69]. Due to the λg separation between the antenna locations, the beams 

overlap with each other 3 dB below the maximum directivity. Utilization of 8 elements provides a 

±250 field of view (FoV). The major drawback of the MFPA is associated with the high level of 

SLL that is 10 dB below the peak directivity. Similar high SLL was also observed at the y-z 

elevation plane. As seen in Figure 4.7, the SLL is uniformly distributed  throughout  the  ±250  FoV 
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and therefore implies a radiation leakage associated with the open circuited stubs of the corporate 

feed network [107]. 

To evaluate the realized gain, the power delivered to the patch antenna element is 

calculated by carrying out a full wave simulation of the feed network shown in Figure 4.5(e) with 

each stub removed and replaced by a 50 Ω port. This results in N+1 ports, where the first port is 

located at the reference plane, second port at the first open stub position and so on. Next, the 

simulated circuit is imported to ADS Schematic as a component that exhibits 9 ports. The first port 

representing the reference plane is connected to a 50 Ω port termination, whereas a second 

termination exhibiting the complex characteristics impedance of Zant is connected to a second node 

representing the antenna location. The remaining nodes are all individually connected to a data 

box that contains the S11 data of the open stub resonator. Under these conditions, the simulated 

|S21|2 represents the power delivered to the antenna relative to the input power at the reference 

plane. As shown in Figure 4.8, for the N=8 element corporate fed MFPA, the maximum |S21|2 at 

30 GHz is -2.5 dB and about the same for all antenna locations. This loss is quite remarkable at 

 

Figure 4.8: Normalized relative power delivered to the antenna element of the MFPA excited by the 
resonant corporate feed network. The antenna is positioned among location #1-#4. 

Antenna in location #1
Antenna in location #2
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This loss is quite remarkable as compared to a conventional FPA implementation. A conventional 

1D 8 element FPA requires a total of 7 single pole double throw (SP2T) switches in its feed 

network. An antenna element gets excited after the incident RF power passes through 3 SP2T 

switches. The readily available commercial Ka band SP2T switches exhibit about 1 dB insertion 

loss [74, 108]. Therefore, at least 3 dB of the input power is dissipated in the switches even without 

considering the loss associated with the microstrip lines, their bends, and interconnects. 

Consequently, in addition to significant RF hardware reduction, the MFPA provides a loss 

performance comparable with the conventional FPAs. 

4.2.3. Straight Feed Network 

The previous section described the design and performance of a resonant corporate network 

fed MFPA. As it was shown, the array pattern exhibited high SLL due to the radiation leakage of 

the unloaded stubs. Therefore, the key to reduce the SLL is to employ a feed network that would 

exhibit fewer number of open stub resonators. As shown in Figure 4.9, this can be accomplished

 

Figure 4.9: Schematic of a MFPA excited by a resonant straight feed network. 

by a compact straight microstrip line terminated with an open circuit. In this configuration, the 

antenna will be loaded with a single straight open stub resonator regardless of its location. 

Therefore, it is expected that the MFPA will radiate with a relatively lower  SLL  as  compared  to
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Figure 4.10: Schematic of the 30 GHz proximity coupled patch antenna designed for the straight feed 
network, and b) its simulated |S11|. 

 

the corporate network fed case. The synthesis of the feed network starts with the antenna design 

as shown in Figure 4.10(a). The antenna is proximity coupled to a λg long microstrip line in order  

to generate N λg spaced antenna locations similar to the corporate feed network. The simulated |S11| 

response reveals 8.67% |S11| ≤ -10 dB bandwidth at 30 GHz as shown in Figure 4.10(b). The 

simulated realized gain is 7 dB into semi-infinite Rexolite. In MFPA realization, the open circuit 

end of the proximity coupled microstrip line will be cascaded with other λg long microstrip lines 

as shown in Figure 4.9. The number of these λg long sections depends on the number of possible 

beam locations in the feed network (i.e. N) and the relative location of the antenna element (i.e. i). 

λg long microstrip lines ensure that the open-circuit condition at port #2 (see Figure 4.11) is 

preserved and antenna maintains its impedance matching. The impedance matching also holds 

when antenna is repositioned over the feed network in increments of λg. The bandwidth of the 

resonant straight microstrip line fed MFPA can be analytically evaluated by first by considering 

the antenna as a two port network and modeling it in the equivalent circuit shown in Figure 4.11. 

As seen, when the antenna  is  at  location i,  the  antenna  is  cascaded  with  an  (N-i)λg  open  stub

(a) (b) 
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Figure 4.11: The equivalent circuit of the MFPA excited by the straight feed network where the antenna is 
positioned at location #i. 

 

resonators and fed by an ݈ ൌ ሺ݅ െ 1ሻߣ௚long transmission line.  Since  the  open  stub  impedance  is  

ܼ௦௧௨௕ ൌ ܼ଴coth	ሾߛሺܰ െ ݅ሻߣ௚ሿ with ߛ ൌ ߙ ൅  the input reflection coefficient seen towards the ,ߚ݆

antenna Γl becomes [37]: 

where ߁௦௧௨௕ ൌ ሺܼ௦௧௨௕ െ ܼ଴ሻ ሺܼ௦௧௨௕ ൅ ܼ଴ሻ⁄ . Then, the load impedance (Zl) is evaluated as: 

and the input impedance Zin is calculated as: 

Consequently, the S11 of the MFPA is determined from (4.11) as  ଵܵଵ ൌ ሺܼ௜௡ െ ܼ଴ሻ ሺܼ௜௡ ൅ ܼ଴ሻ⁄ . 

 Once Γl and Zin are determined, then the delivered power to the load (Zl) can be calculated 

as [47]: 

where V  is given by: 

௟߁  ൌ ଵܵଵ ൅
ଵܵଶܵଶଵ߁௦௧௨௕

1 െ ܵଶଶ߁௦௧௨௕
,  (4.9)

 ܼ௟ ൌ ܼ଴
1 ൅ ௟߁
1 െ ௟߁

 (4.10)

 ܼ௜௡ ൌ ܼ଴
ܼ௅ ൅ ܼ଴ tanhൣሺ݅ െ 1ሻߣ௚൧

ܼ଴ ൅ ܼ௅ tanhൣሺ݅ െ 1ሻߣ௚൧
.  (4.11)

 ௟ܲ ൌ
1
2ܼ଴
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In (4.12), Pl is sum of the dissipated powers in the loading stub (Pstub) and antenna (Pantenna). Pstub 

can be related to Pl using the well-known equations for operational power gain (Gp) of two port 

networks [109]: 

Therefore, Pantenna becomes: 

The bandwidth of the resonant straight microstrip line fed MFPA can be conveniently 

investigated with the above transmission line theory based analysis for different N values. It is 

found that the antenna element exhibits its minimum bandwidth when it occupies the first location 

(i=1). This is expected as in this case, the antenna is terminated with the longest possible open 

stub. Therefore, the MFPA bandwidth is determined by the bandwidth of the antenna when it is at 

location i=1. Figure 4.12(a) depicts the bandwidth performance of the MFPA as a function of N. 

 

Figure 4.12: a) The bandwidth of N element MFPA excited by a resonant straight feed network. The 
bandwidth decreases with N, and b) |S11| performances for different N when the antenna is at location #1. 

 ܸା ൌ
ܼ௜௡

ܼ௜௡ ൅ ܼ଴
ቆ
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(a) (b) 

N=4
N=8
N=16



www.manaraa.com

 

61 
 

 Similar to the resonant corporate network case, the bandwidth decreases with increasing 

N. For example, the array exhibits 8% and 3% bandwidths for N=4 and 8, respectively. The 

corresponding |S11| curves for N =4, 8, and 16 are shown in Figure 4.12(b). A reduction in the array 

bandwidth is clearly observed as N increases from 4 to 16. Moreover, increasing N degrades the 

input impedance matching at the design frequency since the open stub becomes physically longer 

and increases its loading on the antenna.  

To verify the transmission line theory analysis and investigate the radiation performance, 

an N=8 element MFPA was designed. The feed network synthesis starts with forming N-cascade 

of the λg long microstrip line shown in Figure 4.10(a). Next, the straight network is loaded with 

the patch antenna element that can be microfluidically moved among 8 locations separated by λg. 

The |S11| performance calculated with the transmission line theory as the antenna is moved among 

these 8 locations is shown in Figure 4.13(a) and (b). A good |S11|<-15 dB impedance match is 

achieved at each antenna location at 30 GHz. The antenna exhibits the minimum bandwidth at 

location #1. The full wave simulated |S11| performance is shown in Figure 4.13(c) and (d).  By 

comparing the performances, it is seen that a good agreement exists between the transmission line 

theory analysis and the full wave simulation. The simulated |S11| < -10 dB bandwidth is 2.9% and 

also agrees well with the expected 3% bandwidth from transmission line theory analysis. Figure 

4.14(a) and (b) depict the power delivered to the antenna element relative to the input power Pin. 

The antenna is excited with the maximum power level (-1.39 dB at 30 GHz) when it is positioned 

at location #1. The relative power delivered to the antenna drops to -3.84 dB at 30 GHz when the 

antenna is positioned at location #8. The average loss is 2.83 dB and implies a comparable 

performance to a conventional SP2T switch based FPA implementation. The radiation  
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Figure 4.13: |S11| of the 8 element MFPA excited by the resonant straight feed network.  (a)-(b) transmission 

line theory analysis; (c)-(d) full wave simulation. Antenna element is at locations #1-#4 for (a)-(c), and #5-
#8 for (b)-(d). 

 

Figure 4.14: Normalized relative power delivered to the antenna element of the MFPA excited by the 
resonant straight feed network. The antenna is moved among locations: a) #1-#4, and b) #5-#8. 
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Figure 4.15: The normalized radiation pattern of the MFPA excited by the resonant straight feed network. 
The SLL is < -20 dB. 
 

patterns of  the MFPA at x-z elevation plane when the antenna element is moved among locations 

#1-#4 is shown in Figure 4.15. The array scans the beam over ±250 FoV with 29 dB directivity. 

Most importantly, the SLL is reduced by more than 10 dB relative to that obtained from the 

resonant corporate network fed MFPA. Specifically, the resonant based straight line fed MFPA 

exhibits -20 dB SLL relative to the peak directivity. Similar SLL performance is also achieved in 

the y-z elevation plane.   

 By resorting to a center fed straight network as shown in Figure 4.16(a), the longest stub 

length loading the antenna can be further reduced for a given N to achieve bandwidth improvement. 

The equivalent circuit, shown in Figure 4.16(b), is employed to estimate the array’s bandwidth 

when excited with this center fed configuration. The transmission line analysis is similar to the 

edge fed configuration and not detailed for brevity. Similar to the edge fed network, the bandwidth 

of  the  center  fed  network  decreases  with  N  as  shown  in  Figure 4.17(a).  However, a  higher 

bandwidth performance is achieved for the center fed network relative to the edge fed straight and 

corporate resonant networks. For instance, the bandwidth increases from 3% to 5.33% for N=8.  
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Figure 4.16: a) Schematic of a center fed MFPA excited by a resonant straight feed network, and b) its 
equivalent circuit. 
 

 

 

Figure 4.17: a) The bandwidth performance comparison of N element MFPA excited by a center and edge 
fed resonant straight network. The center fed array exhibits relatively higher bandwidth, and b) |S11| 
performances the center fed array for different N when the antenna is at location #N/2. 

 

 

x

y
(a)

(b)

(a) (b) 

N=4
N=8
N=16

Center Fed
Edge Fed



www.manaraa.com

 

65 
 

Figure 4.17(b) depicts the |S11| of the center fed array for N = 4, 8 and 16. The shown 

performances reveal degradation of the impedance matching as N increases. An 8 element MFPA 

excited by the center fed straight resonant network was designed to verify the transmission line 

theory analysis. Figure 4.18(a) demonstrates the |S11| when the antenna element is moved among 

locations #1-#4. The array exhibits |S11 |< -10 dB at 30 GHz regardless of the antenna location. 

The bandwidth is at its minimum when the antenna is located at location 4 (i.e., N/2). The power 

delivered to the antenna element relative to the input power is shown in Figure 4.18(b). 

Specifically, at 30 GHz, the power delivered to the antenna is 1.45 dB below the input power 

regardless of its location. As compared to the edge fed straight resonant network and corporate 

resonant network, the center fed straight resonant network performs the best in terms of bandwidth 

and power loss. The radiation pattern of this MFPA exhibits SLL < -20 dB and similar to that 

shown in Figure. 4.15.  

 

Figure 4.18: The center fed array performance as the antenna is moved among locations #1-#4: a) |S11|, and 

b) antenna’s delivered power. 
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4.2.4. Non-Resonant Feed Network 

 Although the resonant straight feed networks improve the SLL, they still exhibit limited 

bandwidth only suitable for narrowband applications. For wideband operations, the bandwidth of 

the feed network can be significantly improved by resorting to a non-resonant layout as shown in 

Figure 4.19(a). Similar to the resonant straight feed network, this layout consists of a long straight

 

Figure 4.19: a) The non-resonant straight feed network exciting a proximity coupled patch antenna, and b) 
its equivalent circuit.  
 

microstrip line proximately coupled to a microfluidically repositionable patch antenna. However, 

different than the resonant network, the line is terminated with Z0. Therefore, the feed network is 

non-resonant without bandwidth limitation at the expense of being lossy. Moreover, in this layout, 

the antenna element can be positioned at any arbitrary location without losing its impedance 

matching. Hence, the feed network allows for continuous beam-scanning. Nevertheless, in the 

following performance analysis studies, the antenna will be assumed to be positioned at specific 

locations separated by λg to provide a comparison to the MFPAs excited by resonant feed networks. 

x

y (a)

(b)
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The equivalent circuit shown in Figure 4.19(b) for the non-resonant feed network is identical to 

the straight resonant feed network except the terminating impedance (i.e. open circuit vs. Z0). 

Therefore, the |S11| and Pantenna can be evaluated using the equations from (4.9) to (4.15) by 

replacing Zstub with Z0. The |S11| performances calculated from the transmission line theory analysis 

are shown in Figure 4.20(a) and (b). Figure 4.20(c) and (d) depicts the |S11| responses obtained 

from full-wave analysis. It is again observed that the two methods are in very good agreement. 

Specifically, the MFPA exhibits |S11| ≤ -8 dB over the entire simulated frequency range from 29 

GHz to 31 GHz. Figure 4.21(a) and (b) depict the Pantenna calculated from the transmission line 

theory analysis. As expected, at the center frequency of the antenna element (i.e. 30 GHz), Pantenna 

achieves its maximum value. Specifically, Pantenna is 3.45 dB lower relative to the Pin when the 

antenna is positioned at location #1. As the antenna moves towards location #8, Pantenna drops and 

becomes 5.22 dB lower than Pin due to the lossy nature of the straight transmission line. The 

average loss is 4.35 dB and this is still comparable to the conventional SP2T switched 

implementation of the same FPA. Figure 4.22 depicts the scanned beams in the x-z elevation plane 

as the antenna is moved among locations #1-#4. Similar to the previous design, the array scans the 

beam with ±250 FoV with a -20 dB SLL. 

4.3. Experimental Verification 

Performance of an 8 element MFPA excited by the resonant corporate microstrip line feed 

network has been experimentally demonstrated in the previous chapter. In this chapter, due to its 

lower SLL performance, we have selected to experimentally verify the performance of the 8 

element MFPA designed in Section 4.2.3 to operate with the edge fed resonant straight microstrip 

line network. 
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Figure 4.20: |S11| responses of the MFPA excited by the non-resonant straight feed network. (a)-(b) 

transmission line theory analysis and (c)-(d) full wave simulation. Antenna element is at locations #1-#4 
for (a)-(c), and #5-#8 for (b)-(d). 

 

Figure 4.21: Normalized relative power delivered to the antenna element of the MFPA excited by the non-
resonant straight feed network. The antenna is moved among locations: a) #1-#4, and b) #5-#8. 
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Figure 4.22: The normalized radiation pattern of the MFPA excited by the non-resonant straight feed 
network. The SLL is < -20 dB. 
 

4.3.1. Fabrication of Microfluidic Channel 

The fabrication process consists of soft lithography for forming the microfluidic channel 

and feed board etching to form the microstrip line. The soft lithography process involves photo-

lithographically defining the inverted mold of the channel by using a negative photoresist (SU8-

2075) on a Si wafer. Next, PDMS (mixed in the ratio of 10:1 with its curing agent and degassed) 

is poured on top of the inverted mold and left to cure overnight. Although heating accelerates the 

curing; room temperature curing is preferred to minimize the contraction of the polymer. The cured 

PDMS is peeled off from the Si wafer and a metallized RT5880LZ plate having the same 

dimension as that of the antenna is placed inside the channel. The thickness of the plate is 250 μm 

and the metallized coating is 17 um. The micro-channel is filled up with low loss Teflon solution 

that pushes the metallized plate to move it inside the channel.  

Experiments were conducted for plates made of different materials before deciding on the 

RT5880LZ as the metallized plate substrate. The Teflon solution obtained from DuPont is 400S2-

100-1. It consists of 1% Teflon  powdered  resin  dissolved  in  3M FC-40  solution.  FC-40  has a



www.manaraa.com

 

70 
 

  
Figure 4.23: a) Fabrication process of the microfluidic channels, and b) developed closed loop system with 
the micropumps connected to channels that are filled with a low loss dielectric solution. The micropumps 
are run using a controlling unit. 

 

density of 1.855g/cm3. It was observed that the plates made up from higher density materials such 

as silicon (2.33g/cm3) and quartz (2.65g/cm3), could not be moved using the Teflon solution. On 

the other hand, plates of lower density substrate materials such as PMMA (1.18g/cm3) and 

RT5880LZ (1.4g/cm3) could be moved inside the channel using the Teflon solution. Readily 

available copper metallized RT5880LZ substrates from Rogers Corp. were selected above the 

PMMA alternative, as this alleviated the need for in-house metallization. The microfluidic channel 

is bonded to a 100 um thick LCP layer using the process discussed in [110]. The process flow for 

fabricating the channel with the metallized plate is illustrated in Figure 4.23(a). The feed board 

and the microchannel formed by PDMS-LCP are bonded together by using the Afterwards, a 

closed loop pumping system is developed by connecting the pipes from the syringes to 

micropumps. The closed loop system is demonstrated in Figure 4.23(b). 

(a) (b)
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4.3.2. Microfluidic Channel Flow Characterization 

  The successful implementation of a MFPA depends on the ability to move and control the 

flow of the metallized patch inside the rectangular microfluidic channel. Having selected the 

material for the metallized plate substrate as RT5880LZ, further experiments  were  performed  in 

 

  
Figure 4.24: a) Schematic of metallized plate in a microfluidic channel. lchannel is 100 mm, b) the test setup 
of the plate’s flow in a microfluidic channel, c) microfluidic channels with different widths, and d) the 
control setup of the plate’s flow using a compact circuitry. 
 

microfluidic channels of different widths to determine with which channel dimensions the plate 

would move freely without getting tilted or rotated. In these experiments, the length of the channel 

was fixed as lchannel=100 mm (see Figure 4.24(a)). The flow characterization setup depicted in 

Figure 4.24(b) consisted of two piezo-pumps from Bartels® connected to the channels and 

controlled using an mp-x controlling unit [111]. Different channels with widths ranging from 2.5 

mm to 3 mm for a fixed channel height of 400 μm were investigated. As shown in Figure 4.24(c), 

(b) 

(d) (c) 

(a) 
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the channel widths beyond 2.6 mm distorted the plate movement and led to a disoriented flow. The 

channel width of 2.6 mm was found to be appropriate for reliable flow of the patch antenna. Figure  

 4.24(d) depicts a compact circuitry for controlling the flow in the microchannels. Specifically, 

two micropumps are actuated using a chip [111] that is biased with a 5 V battery. The whole 

circuitry is placed on the top of a breadboard.  

The switching speed of the MFPA is determined by how fast the plate can be moved inside 

the channel. This depends on the flow rate (Q) of Teflon solution that can be generated inside the 

channel. The flow rate is related to the cross sectional area (A) of the rectangular channel [112] as: 

where ݒ෤ is the mean velocity of Teflon inside the channel. The mean velocity of a liquid with 

viscosity μ is given by: 

 

Substituting (4.17) in (4.16) we get:  

 

Equation (4.18) relates the pressure difference (ΔP) needed across the ends of the channel 

to a steady flow rate of Q. The channel dimensions determine the resistance offered by the fluid 

(Rfluid) to the external stimuli trying to flow the liquid inside the channel. In the measurement setup, 

Bartels piezo actuated micro-pumps were used as the external stimuli to generate the constant flow 

inside the channel with dimensions of lchannel=100 mm, wchannel=2.6 mm and hchannel=0.4 mm. Rfluid 

was calculated to be 3.3×1010 kg m-4 s-1. The pumps were run and the actuation parameters (input 

voltage amplitude and frequency) were adjusted to get maximum flow rate. The fastest time 

 ܳ ൌ ෤ݒ ൈ ௖௛௔௡௡௘௟ݓ ൈ ݄௖௛௔௡௡௘௟, (4.16)
  

 
෤ݒ ൌ

∆݄ܲ௖௛௔௡௡௘௟
ଶ

௖௛௔௡௡௘௟݈ߤ
൤
1
3
െ
64݄௖௛௔௡௡௘௟
௖௛௔௡௡௘௟ݓହߨ

tanh ൬
௖௛௔௡௡௘௟ݓߨ
2݄௖௛௔௡௡௘௟

൰൨.  (4.17) 

 ܳ ൌ
௖௛௔௡௡௘௟݄௖௛௔௡௡௘௟ݓܲ∆

ଷ

௖௛௔௡௡௘௟݈ߤ
൤
1
3
െ
64݄௖௛௔௡௡௘௟
௖௛௔௡௡௘௟ݓହߨ

tanh ൬
௖௛௔௡௡௘௟ݓߨ
2݄௖௛௔௡௡௘௟

൰൨ ൌ
∆ܲ

௙ܴ௟௨௜ௗ
.	  (4.18)



www.manaraa.com

 

73 
 

recorded that the pump takes to move the plate from 1st location to the 8th one was 108 s which 

implied a flow rate of 0.96 mm3 s-1. Substituting these values in (4.18) we get the pressure 

developed across the ends of the channel as 31.68 Pa. This value is seen as the resistance 

experienced by the piezo-pump when trying to pump Teflon along with the metallized plate. This 

opposing pressure is termed as the back-pressure and it affects the flow rate that can be generated 

by the piezo-pump as: 

where ΔPmax is the maximum back pressure that the pump can tolerate (at ΔPmax, Q=0), and Qmax 

is the maximum flow rate generated by the pump with no back-pressure. Substituting the 

expression for ΔPback from (4.18) into (4.19) we derive the actual flow rate of the piezo-pump as: 

From equation (4.20), it is observed that the maximum flow rate that the pump can generate for a 

given liquid is the critical factor for determining the switching speed. The piezo-pumps (13.5 s) 

are slow because of the lower Qmax rating of the pump for a viscous liquid like FC-40. Using pumps 

with a higher Qmax rating would increase Q. This was verified by using DC gear pumps (GM1606 

[113]). The switching speed between any two adjacent locations was measured to be 0.75 s.  The 

speed could be increased further; however, the high pressure exerted by the pump led to rupturing 

of the bond between PDMS-LCP. The piezo based pumps offer the advantage of lightweight and 

low power consumption, but they result in slower motion. The DC gear pumps, however, consume 

more power 5.5 W (2.75 A @ 2 V), but significantly boost the switching speed of the array. As 

seen in (4.20), for two pumps with same Qmax rating, if Rfluid can be reduced the flow rate will 

increase.  

 ܳ ൌ ܳ௠௔௫
߂ ௠ܲ௔௫ െ ߂ ௕ܲ௔௖௞

߂ ௠ܲ௔௫
,  (4.19)

 
ܳ ൌ

ܳ௠௔௫

1 ൅
ܳ௠௔௫ ௙ܴ௟௨௜ௗ
߂ ௠ܲ௔௫

.  
(4.20)
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4.3.3. Performance of the MFPA 

Figure 4.25(a) depicts the milled feed board, whereas the microfluidic channel is shown in 

Figure 4.25(b). A custom designed Styrofoam holder was built to hold the structure as depicted in 

Figure 4.25(c). The feed board and microfluidic channel were pressed together and flushed on the 

back surface of the lens as shown in Figure 4.25(d). Figure 4.26(a) and (b) depict the measured 

  

Figure 4.25: a) Etched straight resonant based feed network board. The reference planes are shown, b) 
fabricated microfluidic channels, c) the extended hemispherical dielectric lens fixed in a custom designed 
Styrofoam holder, and d) the feed network and channels flushed on the back surface of the lens.   
 
|S11| performance as the antenna element moves from location #1 to #8. As expected, the array 

exhibits a very good impedance match at 30 GHz. The array bandwidth is limited by the antenna 

element’s performance at location #1. The measured bandwidth is 4% and higher than the 3% 

expected from the analytical analysis and full wave simulation. This discrepancy is due to the 

different reference plane location used in the experimental setup. As shown in Figure 4.25(a), the 

reference plane of the measurement is 8λg further away from that of the simulation to accommodate 

(d)

(a) (b)

(c) 

Measurements 
Plane 

Simulation 
Plane 
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Figure 4.26: Measured |S11| response of the resonant based straight line fed MFPA when the metallized 
plate is at locations: a) #1-#4, and b) #5-#8. 
 

  

Figure 4.27: The array measured normalized patterns as the metallized plate was moved among locations 
#1-#4. 

 

an end-launch 2.92 mm connector to feed the array. The re-simulation of the MFPA with the 

extended reference plane predicts a 3.9% bandwidth that agrees well with the measurement. The 

increase in bandwidth is associated with the additional loss of the 8λg long microstrip line 

(a) (b) 

Antenna in location #1
Antenna in location #2
Antenna in location #3
Antenna in location #4
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extension. The beam-scanning performance was tested by measuring the gain patterns when the 

antenna element was moving among locations #1-#4. Figure 4.27 shows the measured normalized  

radiation patterns exhibiting 70 HPBW agreeing with the measured and calculated scan angles. 

Table 4.1 compares and lists the measured gains as well as the simulated and measured scan angles. 

A very good agreement is observed for the measured and calculated scan angles with a deviation 

no more than 10. The maximum measured gain is 23.5 dB when the antenna is at location #3. This 

implies 5.5 dB loss as compared to the predicted 29 dB directivity. The feed network contributes 

to 2.25 dB loss (see Figure 4.14(a)), whereas 1.5 dB loss is from the extended transmission line, 1 

dB lens loss, and 0.75 dB is the connector loss.   

 

Table 4.1: The performance of the resonant based straight fed MFPA 

 

4.4. Concluding Remarks 

The designs and performance evaluations of corporate resonant, straight resonant, and 

straight non-resonant feed networks for microfluidic focal plane arrays (MFPAs) were presented. 

The transmission line theory based analysis was shown as a convenient and reliable method to 

design these feed networks for different array sizes (i.e. N) and predict the bandwidth and loss 

performances. It was demonstrated that the resonant corporate and straight feed networks exhibit 

similar behaviors in terms of bandwidth performance as N increases. On the other hand, the straight 

resonant feed networks enabled a better radiation characteristics with side lobe level (SLL) < -20 

dB relative to the peak directivity. Non-resonant feed network was shown to overcome the 

Antenna in Reservoir:  #1 #2 #3 #4 

Scan Angle 
(Measured, Calculated) 

(240,250) (180,180) (100,110) (30,40) 

Measured Gain [dB] 22.8 21.5 23.5 22.4 
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bandwidth limitation of the resonant based feed networks with possible continuous beam-scanning 

capability.  Relative to the conventional SP2T switched based implementation of the presented 

FPAs, the power loss of the presented feed networks are comparable. The SLL performance 

improvement and the design techniques were experimentally verified through an 8 element 

extended hemispherical dielectric lens based MFPA prototype. Different than the recent work that 

relied on liquid metals, the antenna element of this MFPA was implemented from a metalized plate 

by carrying out flow characterizations on various microfluidic channel geometries. Specifically, 

the MFPA excited by the straight resonant feed network performed with <-20 dB SLL, 4% |S11|<-

10 dB bandwidth, 23.5 dB gain, and ±250 FoV. The MFPA offers a low-cost implementation for 

beam scanning arrays as it does not employ any active RF devices. This metalized plate approach 

paves the way for reliable liquid-metal-free microfluidic reconfigurable devices with higher 

efficiency and power handling capabilities. Studies for improving its scan speed and providing 2D 

beam-scanning capability are underway and will be discussed in future.  
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CHAPTER 5: FUTURE WORK 
 

The continuous demands for miniaturized antenna arrays for GPS applications add more 

stringent constraints on antenna designers to provide smaller antenna elements. In addition, more 

antenna elements are required for such arrays to possibly protect communication links from 

additional interfering sources and signals. In order to obtain a smaller GPS antenna, the proposed 

CDL design can be re-designed on a high contrast ceramic (εr = 25) material. Using a high ceramic 

substrate results in a design that exhibits dimensions of 0.80"×0.80"×0.50". Furthermore, changing 

the arrangement of the loops to a vertical one yields to a stack up design, which obtains the 

capacitive coupling without using lumped elements. Therefore, the antenna’s fabrication process 

is simplified, and thus, the array’s fabrication and implementation becomes faster and simpler. In 

addition, an array with more compact inter-element separations can be constructed, and a center 

element can be possibly added to the array configuration for obtaining more nulls in the radiation 

pattern. 

Both of the introduced MFPAs provided very encouraging performances in terms of 

measured high gain and beam scanning functionalities. Therefore, applying the microfluidic 

principles in antenna arrays should be further investigated for low cost implementation of 2D beam 

scanning. As shown in Figure 5.1, the 2D beam scanning capability is obtained by placing the 

MFPA on a step motor. The scanning in the elevation plane is achieved by moving the metallized 

plate in the microchannels using a micropump, whereas azimuth scanning is realized by rotating 

the step motor. As shown in the figure, the array is located at the focal point of a microwave lens. 

Hence, this research can be also extended to investigate novel design methodologies for microwave 
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lenses. For instance, a microwave lens with a gradient dielectric function is an interesting one to 

mitigate the diffraction effect on the arrays’ radiation pattern. The prototyping of this suggested 

lens is possible using the 3D printing technology.  

 

Figure 5.1: Realization of the 2D beam scanning functionality using the microfluidic principles. 

 

Having a system with an improved reliability is also in the paramount importance. Specifically, a 

transition to hard substrates for implementing the microchannels is expected to improve both of 

the fabrication’s yield and plate’s flow in the microchannels. Moreover, using hard substrates 

would improve the array’s power handling capabilities. As it was illustrated, the array’s 

performance is dependent on the plate’s location. Thus, it is necessary to construct a control system 

that tracks the plate’s location and adjusts it when necessary. This control systems requires a 

feedback mechanism that senses the plates’ location and provides a microcontroller with the 

required information. Different sensing mechanism can be employed and the inductive sensing 

approach is a potential candidate for this desired functionality.    
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